Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are...Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge–Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC’s power capture performance significantly.展开更多
场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedo...场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedom,MDOF)模型计算量小且可同时模拟大量建筑的优势,同时,结合频率波数域(frequency wave number analysis,FK)方法,以等效地震荷载的方式施加地震波场,建立了FK-SE-MDOF耦合方法,实现了SE-MDOF耦合模型中多种波型(P波、SV波和SH波)的斜入射输入,解决了当前三维SCI效应研究方法中未能同时考虑建筑非线性、频谱特性、地震波波型及入射角度影响的问题。首先对方法原理进行了介绍;然后,通过与振动台试验的对比,验证了方法的正确性;进而,采用该方法建立理想场地-城市建筑群相互作用耦合模型,主要探讨了入射角度和地震波波型对SCI效应的影响,得到了一些有益结论。该方法较为真实地反映SCI效应影响的同时,可反映建筑基础轮廓对地震波场的影响,适用于需考虑建筑轮廓信息的社区尺度SCI效应研究,可为城市规划、抗震设计、风险评估以及震后救援等工作提供定量指导。展开更多
基金financially supported by the Shandong Provincial Natural Science Key Basic Program(Grant No.ZR2017ZA0202)the Qingdao Municipal Science&Technology Program(Grant No.15-8-3-7-jch)Special Project for Marine Renewable Energy(Grant No.GHME2016YY02)
文摘Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge–Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC’s power capture performance significantly.
文摘场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedom,MDOF)模型计算量小且可同时模拟大量建筑的优势,同时,结合频率波数域(frequency wave number analysis,FK)方法,以等效地震荷载的方式施加地震波场,建立了FK-SE-MDOF耦合方法,实现了SE-MDOF耦合模型中多种波型(P波、SV波和SH波)的斜入射输入,解决了当前三维SCI效应研究方法中未能同时考虑建筑非线性、频谱特性、地震波波型及入射角度影响的问题。首先对方法原理进行了介绍;然后,通过与振动台试验的对比,验证了方法的正确性;进而,采用该方法建立理想场地-城市建筑群相互作用耦合模型,主要探讨了入射角度和地震波波型对SCI效应的影响,得到了一些有益结论。该方法较为真实地反映SCI效应影响的同时,可反映建筑基础轮廓对地震波场的影响,适用于需考虑建筑轮廓信息的社区尺度SCI效应研究,可为城市规划、抗震设计、风险评估以及震后救援等工作提供定量指导。