期刊文献+
共找到611篇文章
< 1 2 31 >
每页显示 20 50 100
激光触发多门极半导体开关初步研究
1
作者 刘宏伟 王凌云 +6 位作者 栾崇彪 袁建强 谢卫平 杨杰 何泱 付佳斌 徐乐 《强激光与粒子束》 CAS CSCD 北大核心 2024年第11期25-31,共7页
固态脉冲功率源在脉冲功率技术领域应用广泛,已经成为新的研究热点,其中,高功率固态开关器件是固态脉冲功率源的核心。报道了一种新型光触发多门极半导体开关(LIMS),该开关具备光致线性模式和场致增益模式两种工作模式,解决了传统电控... 固态脉冲功率源在脉冲功率技术领域应用广泛,已经成为新的研究热点,其中,高功率固态开关器件是固态脉冲功率源的核心。报道了一种新型光触发多门极半导体开关(LIMS),该开关具备光致线性模式和场致增益模式两种工作模式,解决了传统电控器件电流上升率低的问题,实现了器件的高电流上升率,光致线性模式下实验测试得到了454 kA/μs的电流上升率,该开关在雷管起爆、电磁脉冲模拟等领域已得到初步应用。 展开更多
关键词 光触发多门极半导体开关 固态脉冲功率源 重复频率
下载PDF
基于偏正结构表示的加工命名实体识别方法
2
作者 王素琴 王钰珏 +2 位作者 石敏 朱登明 李兆歆 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期958-967,共10页
制造企业积累大量的零件加工经验多以文本形式存在,如何从文本中挖掘出高质量的零件加工知识是个尚待解决的问题。针对待识别实体存在的偏正结构特征,导致实体边界界定模糊的问题,提出一种多网络协调的中文命名实体识别方法。在BERT生... 制造企业积累大量的零件加工经验多以文本形式存在,如何从文本中挖掘出高质量的零件加工知识是个尚待解决的问题。针对待识别实体存在的偏正结构特征,导致实体边界界定模糊的问题,提出一种多网络协调的中文命名实体识别方法。在BERT生成字向量的过程中,通过领域自适应方法,提高字向量对工艺实体的表征能力,同时,在BiLSTM-CRF模型中引入注意力机制和多门控制的混合专家网络捕获上下文特征与实体信息。实验表明,较于当前主流的命名实体识别模型,该文提出的方法对机械零件加工实体识别的F1值达到80.15%,取得优于其他模型的最好性能。 展开更多
关键词 中文命名实体识别 机械零件加工 多门控制的混合专家网络 领域自适应
下载PDF
混合注意力与多特征交互的去雾算法
3
作者 杨燕 张全君 梁皓博 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第9期56-64,共9页
为解决目前深度学习去雾算法在处理非均匀雾天图像时无法有效利用多尺度特征,导致复原出的图像产生颜色失真、细节恢复不完整等问题,提出了混合注意力与多特征交互的图像去雾算法。首先,利用编码模块提取不同尺度的特征;其次,构造混合... 为解决目前深度学习去雾算法在处理非均匀雾天图像时无法有效利用多尺度特征,导致复原出的图像产生颜色失真、细节恢复不完整等问题,提出了混合注意力与多特征交互的图像去雾算法。首先,利用编码模块提取不同尺度的特征;其次,构造混合注意力模块,从全局角度对图像雾气进行感知,并利用通道注意力机制对不同雾浓度分配权重;然后,设计多特征交互模块,实现不同尺度特征间的信息交换,有效利用低分辨率特征中的语义信息,同时保留了高分辨率特征的空间细节与颜色信息,并利用门控融合模块聚合不同尺度的特征;最后,解码模块对融合后的特征进行重构,得到无雾图像。实验结果表明,运用本文提出的算法恢复的去雾图像不仅主观上颜色自然、细节清晰,而且在客观指标上也优于现有的主流算法。该研究结果可为深度学习去雾研究与应用提供新的方案。 展开更多
关键词 图像去雾 编解码器 混合注意力 多特征交互 门控融合
下载PDF
基于多尺度注意力的遥感影像建筑物提取研究
4
作者 赫晓慧 周涛 +2 位作者 李盼乐 常静 李加冕 《计算机科学》 CSCD 北大核心 2024年第5期134-142,共9页
基于深度学习的遥感影像建筑物提取方法具有覆盖范围广、运算效率高的特点,在城市建设、灾害防治等方面有着重要的实际意义。主流方法大多采用多尺度特征融合的方式使神经网络能够学习到更丰富的语义信息,然而由于受到多尺度特征的复杂... 基于深度学习的遥感影像建筑物提取方法具有覆盖范围广、运算效率高的特点,在城市建设、灾害防治等方面有着重要的实际意义。主流方法大多采用多尺度特征融合的方式使神经网络能够学习到更丰富的语义信息,然而由于受到多尺度特征的复杂性以及其他类别地物的干扰,该类方法往往存在着目标漏检与噪声密集的问题。对此,文中设计并实现了一种结合注意力机制的特征解译模型MGA-ResNet50(MGAR)。该方法的核心在于利用多头注意力对高等级语义信息进行分层加权处理,以提取出表征效果较好的最优特征组合;而后使用门控结构将每维特征图与对应编码端的低级语义信息融合,来解决局部建筑物细节信息丢失的问题。在Massachusetts Building,WHU Building等公开数据集上的实验结果表明,与RAPNet,GAMNet,GSM等较为先进的多尺度特征融合方法相比,所提算法能够取得更高的F1与IoU指标。 展开更多
关键词 深度学习 建筑物提取 多尺度特征 多头注意力 门控机制
下载PDF
结合多粒度视图动态融合的多模态方面级情感分析
5
作者 杨颖 钱馨雨 王合宁 《计算机工程与应用》 CSCD 北大核心 2024年第22期172-183,共12页
为了解决以往多模态方面级情感分析研究中存在的特征提取不充分、数据噪声未被有效处理以及多模态数据中的复杂交互被忽视等问题,提出了一种多粒度视图动态融合模型(multi-granularity view dynamic fusion model,MVDFM)。从粗粒度和细... 为了解决以往多模态方面级情感分析研究中存在的特征提取不充分、数据噪声未被有效处理以及多模态数据中的复杂交互被忽视等问题,提出了一种多粒度视图动态融合模型(multi-granularity view dynamic fusion model,MVDFM)。从粗粒度和细粒度两个视角,对文本和图像数据进行向量化编码,以便充分捕捉数据特征,增强模型信息表达能力;提取文本、图像的多粒度视图特征,并设计动态门控自注意力机制,对细粒度级的文本、图像视图进行降噪,进一步保证特征提取质量;为了挖掘不同粒度上多视图之间的互补性和一致性,提出一种三视图分解高阶池化机制,对多粒度视图特征进行两阶段动态融合,得到最终的目标方面词情感极性。实验结果表明,该模型在公共数据集Twitter-2015和Twitter-2017上的准确率和F1值分别达到了78.69%、74.48%以及72.77%、71.61%,相较于最优基线模型分别提升了0.55、0.88个百分点,以及1.67、2.45个百分点。说明该方法能够充分利用多模态数据中包含的深层语义信息,并有效挖掘与目标方面词相关的重要信息,从而提高方面级情感预测效果。 展开更多
关键词 多模态方面级情感分析 动态门控注意力 多粒度视图 动态融合
下载PDF
融合时间感知和多兴趣提取网络的序列推荐
6
作者 唐宏 金哲正 +1 位作者 张静 刘斌 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第4期807-818,共12页
针对序列推荐任务中的时间动态性和多重兴趣建模问题,提出一种时间感知的项目嵌入方法,用于学习项目之间的时间关联性。在此基础上,提出一种融合时间感知和多兴趣提取网络的序列推荐(time-aware multi-interest sequence recommendation... 针对序列推荐任务中的时间动态性和多重兴趣建模问题,提出一种时间感知的项目嵌入方法,用于学习项目之间的时间关联性。在此基础上,提出一种融合时间感知和多兴趣提取网络的序列推荐(time-aware multi-interest sequence recommendation,TMISA)方法。TMISA采用自注意力序列推荐模型作为局部特征学习模块,以捕捉用户行为序列中的动态偏好;通过多兴趣提取网络对用户的全局偏好进行建模;引入门控聚合模块将局部和全局特征表示动态融合,生成最终的用户偏好表示。实验证明,在5个真实推荐数据集上,TMISA模型表现出卓越性能,超越了多个先进的基线模型。 展开更多
关键词 序列推荐 自注意力机制 时间感知的项目嵌入 多兴趣提取网络 门控聚合模块
下载PDF
多源异构数据和注意力门控机制的小麦产量预测
7
作者 陈书理 张书贵 赵展 《山东农业大学学报(自然科学版)》 北大核心 2024年第3期444-452,共9页
针对传统的单模态数据预测小麦产量存在精度不高的问题,提出一种结合多源异构数据和注意力门控机制的小麦产量预测方法。首先引入了特征级的门控策略,来捕获每个模态内部特征的信息变化;然后利用神经网络评估每个模态内的置信度分数,并... 针对传统的单模态数据预测小麦产量存在精度不高的问题,提出一种结合多源异构数据和注意力门控机制的小麦产量预测方法。首先引入了特征级的门控策略,来捕获每个模态内部特征的信息变化;然后利用神经网络评估每个模态内的置信度分数,并构建模态间的有效信息获取模块;最后设计了基于Transformer的空间和通道注意力门控机制模块,将不同模态之间的有效信息进行充分的融合,从而获得最佳的预测特征表示。实验结果表明,所提方法与传统方法相比具有更高的预测精准度,RMSE和MAE分别仅为809kg/hm^(2)和522kg/hm^(2),R^(2)则达到了0.806,通过对河南省近10年的小麦产量进行预测,得到的三项评价指标均相对稳定,且展现出了较强的鲁棒性。消融实验也验证了该方法中的不同组件均能有效提高小麦产量的预测精度,可为相关部门制定保障粮食安全管理决策提供有力的数据支持。 展开更多
关键词 小麦产量预测 多源异构数据 注意力机制 门控机制 特征融合
下载PDF
面向小样本抽取式问答的多标签语义校准方法
8
作者 刘青 陈艳平 +2 位作者 邹安琪 秦永彬 黄瑞章 《应用科学学报》 CAS CSCD 北大核心 2024年第1期161-173,共13页
小样本抽取式问答任务旨在利用文章给定的上下文片段,抽取出真实的答案片段。其基线模型采用的方法只针对跨度进行学习,缺乏对全局语义信息的利用,在含有多组不同重复跨度的实例中存在着理解偏差等问题。为了解决上述问题,该文利用不同... 小样本抽取式问答任务旨在利用文章给定的上下文片段,抽取出真实的答案片段。其基线模型采用的方法只针对跨度进行学习,缺乏对全局语义信息的利用,在含有多组不同重复跨度的实例中存在着理解偏差等问题。为了解决上述问题,该文利用不同层级的语义提出了一种面向小样本抽取式问答任务的多标签语义校准方法。采用包含全局语义信息的头标签和基线模型中的特殊字符构成多标签进行语义融合,并利用语义融合门来控制全局信息流的引入,将全局语义信息融合到特殊字符的语义信息中。然后,利用语义筛选门对新融入的全局语义信息和该特殊字符的原有语义信息进行保留与更替,实现对标签偏差语义的校准。在8个小样本抽取式问答数据集中的56组实验结果表明:该方法在评价指标F1值上均明显优于基线模型,证明了所提方法的有效性和先进性。 展开更多
关键词 小样本抽取式问答 跨度抽取式问答 多标签语义融合 双门控机制 机器阅读理解
下载PDF
基于门控循环单元和Transformer的车辆轨迹预测方法
9
作者 王庆荣 谭小泽 +1 位作者 朱昌锋 李裕杰 《汽车技术》 CSCD 北大核心 2024年第7期1-8,共8页
为增强自动驾驶车辆对动态环境的理解能力及其道路行驶安全性,提出基于门控循环单元(GRU)和Transformer的车辆轨迹预测模型STGTF,使用GRU提取车辆的历史轨迹特征,通过双层多头注意力(MHA)机制提取车辆的时空交互特征,生成预测轨迹。试... 为增强自动驾驶车辆对动态环境的理解能力及其道路行驶安全性,提出基于门控循环单元(GRU)和Transformer的车辆轨迹预测模型STGTF,使用GRU提取车辆的历史轨迹特征,通过双层多头注意力(MHA)机制提取车辆的时空交互特征,生成预测轨迹。试验结果表明,预测结果的均方根误差(RMSE)平均降低7.3%,STGTF在短期预测和长期预测方面均有不同程度的提升,验证了模型的有效性。 展开更多
关键词 车辆轨迹预测 门控循环单元 TRANSFORMER 车辆交互 多头注意力机制
下载PDF
基于改进残差神经网络的家蚕日龄识别模型
10
作者 田丁伊 石洪康 +2 位作者 祝诗平 陈肖 张剑飞 《中国农机化学报》 北大核心 2024年第2期259-266,共8页
家蚕日龄的准确识别有助于精准饲喂和动物福利,因此为准确识别家蚕生长时期中3龄第1天至5龄第7天,共14个日龄,在实际环境下采集特定家蚕品种,构建以14个日龄为单位的数据集。提出一种基于改进残差神经网络的Moga-ResNet,该方法在经典残... 家蚕日龄的准确识别有助于精准饲喂和动物福利,因此为准确识别家蚕生长时期中3龄第1天至5龄第7天,共14个日龄,在实际环境下采集特定家蚕品种,构建以14个日龄为单位的数据集。提出一种基于改进残差神经网络的Moga-ResNet,该方法在经典残差神经网络ResNet50的基础上,引入多阶门控机制以获取日龄图像的显著性特征。通过在同一个家蚕日龄数据集上开展模型训练与测试得到,Moga-ResNet的识别准确率为96.57%,F1值为96.57%,召回率为96.62%,与Swin Transformer、MobileNet v3、CSPNet和DenseNet四个经典模型的评价指标相比,Moga-ResNet在家蚕的日龄识别中具有较强的识别能力,可以为开展家蚕精准饲喂和数字化管理相关工作提供基础。 展开更多
关键词 家蚕 日龄识别 多阶门控机制 残差神经网络
下载PDF
基于动态Transformer的轻量化目标检测算法
11
作者 方思凯 孙广玲 +1 位作者 陆小锋 刘学锋 《电光与控制》 CSCD 北大核心 2024年第2期52-57,共6页
针对Transformer检测模型计算复杂度高以及检测效率低的问题,提出一种轻量化的动态Transformer目标检测改进算法。首先,在自注意力模块中引入动态门来筛选重要的关注区域,设计了从局部到全局的动态稀疏自注意力机制,在减轻计算负载的同... 针对Transformer检测模型计算复杂度高以及检测效率低的问题,提出一种轻量化的动态Transformer目标检测改进算法。首先,在自注意力模块中引入动态门来筛选重要的关注区域,设计了从局部到全局的动态稀疏自注意力机制,在减轻计算负载的同时增强模型的多尺度泛化能力;其次,在模型结构层面上引入了动态跳层机制,使模型在推理过程中能够根据输入自适应调整参数和结构,在检测速率与精度之间取得更好的权衡。实验结果表明,改进后检测模型的计算冗余有效降低,相比现有的基准模型更加高效,实际应用空间更加广阔。 展开更多
关键词 目标检测 TRANSFORMER 轻量化 动态门 多尺度 动态跳层
下载PDF
基于强化学习的多雷达抗干扰算法研究
12
作者 智永锋 邱璐莹 +2 位作者 张龙 高红岗 师浩博 《现代雷达》 CSCD 北大核心 2024年第2期131-137,共7页
针对多雷达系统在受到环境的扫频干扰下无法工作的问题,研究了基于深度强化学习的多雷达共存抗干扰算法。文中将环境划分为多个子频段,对干扰占用频段过程进行建模,用马尔可夫模型对多雷达系统进行建模;对双深度Q网络(Double DQN)强化... 针对多雷达系统在受到环境的扫频干扰下无法工作的问题,研究了基于深度强化学习的多雷达共存抗干扰算法。文中将环境划分为多个子频段,对干扰占用频段过程进行建模,用马尔可夫模型对多雷达系统进行建模;对双深度Q网络(Double DQN)强化学习算法进行改进,与门控单元循环神经网络相结合,使之能处理依赖于长时间序列的干扰问题;提出了基于门控循环记忆的深度确定性策略强化学习算法,针对Double DQN强化学习中的网络臃肿和行动集合较大的问题进行了改进,采用直接输出行动策略,有效降低了网络复杂度。实验仿真结果表明,在多雷达存在的情况,该算法通过避开存在干扰的频点,不仅能够有效降低来自外界的干扰,还能减少己方雷达相互之间的干扰。 展开更多
关键词 多雷达系统 深度强化学习 抗干扰 马尔可夫模型 门控循环单元
下载PDF
基于标签交互Seq2Seq模型的多标签文本分类方法
13
作者 王嫄 胡鹏 +3 位作者 鄢艳玲 王佳帅 赵婷婷 杨巨成 《传感器与微系统》 CSCD 北大核心 2024年第8期155-159,共5页
多标签文本分类任务可被建模为文本序列到标签序列的映射任务。然而,现有的序列到序列(Seq2Seq)模型仅从嘈杂文本中提取粗粒度的文本级表示,忽略了标签与单词之间细粒度的交互线索,导致类别理解偏差。对此,提出基于编码器—解码器结构... 多标签文本分类任务可被建模为文本序列到标签序列的映射任务。然而,现有的序列到序列(Seq2Seq)模型仅从嘈杂文本中提取粗粒度的文本级表示,忽略了标签与单词之间细粒度的交互线索,导致类别理解偏差。对此,提出基于编码器—解码器结构的标签语义交互Seq2Seq模型。在文本语义提取阶段,使用门控机制融合粗粒度的文本级表示和细粒度的交互线索,最终得到类别理解纠正的文本表示。在2个标准数据集上,与LEAM,LSAN,SGM等6个算法进行对比实验,结果表明,本文模型在2个主要评价指标上均得到显著提升。 展开更多
关键词 多标签文本分类 序列到序列 自适应门 多头注意力 标签嵌入
下载PDF
结合注意力机制和Mengzi模型的短文本分类
14
作者 陈雪松 李衡 王浩畅 《计算机与现代化》 2024年第9期101-106,120,共7页
如何使用短文本分类技术挖掘有用的文本信息,是当前热门的研究方向之一。为了解决短文本特征信息稀疏和特征信息难以提取的问题,提出一种Mengzi-ADCBU短文本分类模型,该模型利用Mengzi预训练模型将输入的文本信息转化为相应的文本表示,... 如何使用短文本分类技术挖掘有用的文本信息,是当前热门的研究方向之一。为了解决短文本特征信息稀疏和特征信息难以提取的问题,提出一种Mengzi-ADCBU短文本分类模型,该模型利用Mengzi预训练模型将输入的文本信息转化为相应的文本表示,再将获得的文本向量分别输入改进的深度金字塔卷积神经网络和融合了多头注意力机制的双向门控单元中提取文本特征信息,将两者提取到的特征信息进行融合之后,输送给全连接层和Softmax函数完成短文本分类。在公开的短文本数据集THUCNews和SougouCS上分别进行多组模型对比实验,实验结果表明本文提出的MengziADCBU模型在短文本分类的准确率、精确度、召回率和F1值等评价指标上都比现在的主流模型性能更优,具有较好的短文本分类能力。 展开更多
关键词 短文本 多头注意力 深度金字塔卷积神经网络 双向门控单元
下载PDF
结合模态表征学习的多模态情感分析 被引量:1
15
作者 刘若尘 冯广 +1 位作者 罗良语 林浩泽 《计算机系统应用》 2024年第5期280-287,共8页
在当前视频多模态情感分析研究中,存在着未充分考虑模态之间的动态独立性和模态融合缺乏信息流控制的问题.为解决这些问题,本文提出了一种结合模态表征学习的多模态情感分析模型.首先,通过使用BERT和LSTM分别挖掘文本、音频和视频的内... 在当前视频多模态情感分析研究中,存在着未充分考虑模态之间的动态独立性和模态融合缺乏信息流控制的问题.为解决这些问题,本文提出了一种结合模态表征学习的多模态情感分析模型.首先,通过使用BERT和LSTM分别挖掘文本、音频和视频的内在信息,其次,引入模态表征学习,以获得更具信息丰富性的单模态特征.在模态融合阶段,融合了门控机制,对传统的Transformer融合机制进行改进,以更精确地控制信息流.在公开数据集CMU-MOSI和CMU-MOSEI的实验结果表明,与传统模型相比,准确性和F1分数都有所提升,验证了模型的有效性. 展开更多
关键词 多模态情感分析 表征学习 特征融合 门控机制 多头注意力机制
下载PDF
一种铝合金壳体压铸模具设计 被引量:1
16
作者 孙全喜 李淑利 +5 位作者 王伟 石智成 田迎春 尹飞 刘辉 李金桃 《铸造》 CAS 2024年第2期220-223,共4页
通过对壳体零件的结构和成形性分析,重点对模具设计的主要环节进行了详细的分析与研究;分析设计了模具的分型面位置、浇注和排溢系统的结构以及推出机构,采用在侧面厚壁处多点浇口的结构形式;对模具的型芯、型腔做了具体的结构设计,采... 通过对壳体零件的结构和成形性分析,重点对模具设计的主要环节进行了详细的分析与研究;分析设计了模具的分型面位置、浇注和排溢系统的结构以及推出机构,采用在侧面厚壁处多点浇口的结构形式;对模具的型芯、型腔做了具体的结构设计,采用型腔在定模、型芯在动模的普通两板式结构形式;并且型芯和型腔部分制作成活动镶件,便于修理、更换,模具结构简单、实用,完全满足模具的设计要求。 展开更多
关键词 壳体零件 模具设计 多点浇口 两板式 设计要求
下载PDF
一种多任务联合训练的机器阅读理解模型
17
作者 王勇 陈秋怡 +1 位作者 苗夺谦 杨宁创 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1398-1404,共7页
在机器阅读理解任务中,如何在包含不可回答问题的情况下提高答案的准确性是自然语言处理领域的一项重要挑战.虽然基于深度学习的机器阅读理解模型展现出很好的性能,但是这些模型仍然存在抽取特征冗余、语义信息不全面、问题分类任务和... 在机器阅读理解任务中,如何在包含不可回答问题的情况下提高答案的准确性是自然语言处理领域的一项重要挑战.虽然基于深度学习的机器阅读理解模型展现出很好的性能,但是这些模型仍然存在抽取特征冗余、语义信息不全面、问题分类任务和答案抽取任务耦合性不强的问题.为了解决以上问题,本文提出一种结合门控机制和多级残差结构的多任务联合训练模型GMRT(Gated Mechanism and Multi-level Residual Structure for Multi-task Joint Training),以提升机器阅读理解任务中答案预测的准确性.GMRT构建门控机制来筛选交互后的关联特征,从而控制信息的流动.采用多级残差结构分别连接注意力机制和门控机制,保证每个阶段都保留原始语义信息.同时,通过边缘损失函数对问题分类任务和答案抽取任务联合训练,确保预测答案过程中任务之间的强耦合性.在SQuAD2.0数据集上的实验结果表明,GMRT模型的EM值和F1值均优于对比模型. 展开更多
关键词 机器阅读理解 多任务联合训练 门控机制 多级残差结构
下载PDF
融合多粒度信息的用户画像生成方法 被引量:1
18
作者 邵一博 秦玉华 +2 位作者 崔永军 高宝勇 赵彪 《计算机应用研究》 CSCD 北大核心 2024年第2期401-407,共7页
现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该... 现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。 展开更多
关键词 用户画像 多粒度信息融合 特征提取 双向控制循环单元
下载PDF
变压器油中乙炔门控循环单元网络多步预测超参数优化方法 被引量:1
19
作者 赵军 高树国 +4 位作者 何瑞东 相晨萌 芮逸凡 王亚林 尹毅 《高压电器》 CAS CSCD 北大核心 2024年第7期163-172,190,共11页
油中溶解乙炔作为电力变压器中重要的放电程度表征参量之一,对其进行多步预测可以为变压器故障诊断及预警提供重要依据。现有的状态预测模型主要集中于单步预测,对于未来更长时期变化趋势的预测手段不足。此外,基于深度学习的多步预测... 油中溶解乙炔作为电力变压器中重要的放电程度表征参量之一,对其进行多步预测可以为变压器故障诊断及预警提供重要依据。现有的状态预测模型主要集中于单步预测,对于未来更长时期变化趋势的预测手段不足。此外,基于深度学习的多步预测模型的超参数选择大多基于经验和朴素的单一控制变量法,超参数之间的耦合关系没有得到充分的研究。文中提出基于多输出策略的门控循环单元(gated recurrent unit,GRU)神经网络多步预测模型,通过改变模型结构超参数和训练超参数研究超参数之间的耦合关系,使用多目标灰狼优化算法对不同预测结果倾向的GRU模型进行超参数优化。结果表明,GRU模型可以较为准确的对变压器油中乙炔含量进行30天预测,GRU模型的各超参数对输出预测结果的影响规律并不统一且相互影响,一组超参数无法同时达到多目标最优。多目标灰狼优化算法能够根据预测目标的不同,优化选择合适的超参数,为人工智能算法超参数的选取提供参考。 展开更多
关键词 变压器 乙炔 门控循环单元(GRU) 灰狼算法 多步预测
下载PDF
基于事件演化图的多标记事件预测模型
20
作者 王华珍 许泽 +3 位作者 孙悦 丘斌 陈坚 邱强斌 《计算机工程》 CAS CSCD 北大核心 2024年第4期132-140,共9页
多标记事件预测是指预测多个相关联的事件是否会在未来发生,相比传统单标记事件预测,需要同时预测多个目标事件。现有的事件预测研究忽略各领域存在的多标记事件情境,且对多标记事件预测研究较少。提出一种基于事件演化图的多标记事件... 多标记事件预测是指预测多个相关联的事件是否会在未来发生,相比传统单标记事件预测,需要同时预测多个目标事件。现有的事件预测研究忽略各领域存在的多标记事件情境,且对多标记事件预测研究较少。提出一种基于事件演化图的多标记事件预测模型(MLEP),以实现基于事件演化图(EEG)的多标记事件预测研究模式。首先基于事件链构建事件演化图;然后对多标记事件预测问题进行问题转换,将多标记问题转化为单标记问题,利用事件表示学习方法获取所有事件的向量表示,对多标记事件进行编码;最后采用门控图神经网络(GGNN)框架构建多标记事件预测模型,根据相似度匹配出最优的后续事件,实现多标记事件的预测。在真实数据集上的实验结果表明,MLEP模型可以有效地预测出多标记事件,预测准确率达到了65.58%,性能优于大多现有的基准模型,提升幅度达到了4.94%以上。通过消融实验也证明了更好的事件表示学习方法对事件具有较好的表示效果,提升多标记事件预测的性能。 展开更多
关键词 多标记 事件演化图 事件表示学习 门控图神经网络 事件预测
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部