期刊文献+
共找到824篇文章
< 1 2 42 >
每页显示 20 50 100
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
1
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
下载PDF
Lithofacies identi cation using support vector machine based on local deep multi-kernel learning 被引量:11
2
作者 Xing-Ye Liu Lin Zhou +1 位作者 Xiao-Hong Chen Jing-Ye Li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期954-966,共13页
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie... Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM. 展开更多
关键词 Lithofacies discriminant Support vector machine multi-kernel learning Reservoir prediction Machine learning
下载PDF
Multi-channel differencing adaptive noise cancellation with multi-kernel method 被引量:1
3
作者 Wei Gao Jianguo Huang Jing Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期421-430,共10页
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n... Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment. 展开更多
关键词 adaptive noise cancellation multi-channel differencing multi-kernel learning array signal processing.
下载PDF
Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine 被引量:16
4
作者 Hongshan ZHAO Yufeng GAO +1 位作者 Huihai LIU Lang LI 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2019年第2期350-356,共7页
In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, th... In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine(SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM. 展开更多
关键词 Wind TURBINE BEARING Fault diagnosis Stochastic SUBSPACE identification(SSI) multi-kernel support vector machine(MSVM)
原文传递
基于Multi-kernel和KRR的数据还原算法 被引量:1
5
作者 刘剑 龚志恒 吴成东 《控制与决策》 EI CSCD 北大核心 2014年第5期821-826,共6页
由于数据被核化后不能还原,使核方法的应用受到局限.对此,提出一种基于Multi-kernel和KRR的数据还原算法.首先,通过同类数据中已知数据进行多次核化迭代,使已知数据在超高维欧氏空间中呈线性;然后,利用已知数据对同类未知数据进行线性表... 由于数据被核化后不能还原,使核方法的应用受到局限.对此,提出一种基于Multi-kernel和KRR的数据还原算法.首先,通过同类数据中已知数据进行多次核化迭代,使已知数据在超高维欧氏空间中呈线性;然后,利用已知数据对同类未知数据进行线性表示,并以Kernel ridge regression(KRR)算法进行未知数据的回归;最后实现数据还原.选取Iris flower和JAFFE两类数据集进行还原实验,实验结果表明,所提出的算法可以有效地还原未知数据,而且在其他领域的应用也有较好的效果. 展开更多
关键词 多核 数据还原 核岭回归 迭代 超高维欧氏空间
原文传递
Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine 被引量:2
6
作者 Lele CAO Fuchun SUN +1 位作者 Hongbo LI Wenbing HUANG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第2期276-289,共14页
Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine l... Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine learning algorithms performing efficient sensory feature fusion have become a hot topic in robot recognition domain. This paper proposes an online multi-kernel extreme learning machine (OM-ELM) which assembles multiple ELM classifiers and optimizes the kernel weights with a p-norm formulation of multi-kernel learning (MKL) problem. It can be applied in feature fusion applications that require incremental learning over multiple sequential sensory readings. The performance of OM-ELM is tested towards four different robot recognition tasks. By comparing to several state-of-the-art online models for multi-kernel learning, we claim that our method achieves a superior or equivalent training accuracy and generalization ability with less training time. Practical suggestions are also given to aid effective online fusion of robot sensory features. 展开更多
关键词 multi-kernel learning online learning extreme learning machine feature fusion robot recognition
原文传递
An Ensemble Approach for Emotion Cause Detection with Event Extraction and Multi-Kernel SVMs 被引量:7
7
作者 Ruifeng Xu Jiannan Hu +2 位作者 Qin Lu Dongyin Wu Lin Gui 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第6期646-659,共14页
In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather t... In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather than the regular emotion classification or emotion component extraction. Since there is no open dataset for this task available, we first designed and annotated an emotion cause dataset which follows the scheme of W3 C Emotion Markup Language. We then present an emotion cause detection method by using event extraction framework,where a tree structure-based representation method is used to represent the events. Since the distribution of events is imbalanced in the training data, we propose an under-sampling-based bagging algorithm to solve this problem. Even with a limited training set, the proposed approach may still extract sufficient features for analysis by a bagging of multi-kernel based SVMs method. Evaluations show that our approach achieves an F-measure 7.04%higher than the state-of-the-art methods. 展开更多
关键词 emotion cause detection event extraction multi-kernel SVMs bagging
原文传递
The Optimal Solution of Multi-kernel Regularization Learning 被引量:1
8
作者 Hong Wei SUN Ping LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第8期1607-1616,共10页
In regularized kernel methods, the solution of a learning problem is found by minimizing a functional consisting of a empirical risk and a regularization term. In this paper, we study the existence of optimal solution... In regularized kernel methods, the solution of a learning problem is found by minimizing a functional consisting of a empirical risk and a regularization term. In this paper, we study the existence of optimal solution of multi-kernel regularization learning. First, we ameliorate a previous conclusion about this problem given by Micchelli and Pontil, and prove that the optimal solution exists whenever the kernel set is a compact set. Second, we consider this problem for Gaussian kernels with variance σ∈(0,∞), and give some conditions under which the optimal solution exists. 展开更多
关键词 Learning theory multi-kernel regularization optimal solution Gaussian kernels
原文传递
Multi-kernel dictionary learning for classifying maize varieties 被引量:1
9
作者 Hua Zhu Jun Yue +1 位作者 Zhenbo Li Zhiwang Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期183-189,共7页
The automatic classification and identification of maize varieties is one of the important research contents in agriculture.A multi-kernel maize varieties classification approach was proposed in this paper in order to... The automatic classification and identification of maize varieties is one of the important research contents in agriculture.A multi-kernel maize varieties classification approach was proposed in this paper in order to improve the recognition rate of maize varieties.In this approach,four kinds of maize varieties were selected,in each variety 200 grains were selected randomly as the samples,and in each sample 160 grains were taken as the training samples randomly;the characteristics of maize grain were extracted as the typical characteristics to distinguish maize varieties,by which the dictionary required by K-SVD was constructed;for the test samples,the feature-matrixes were extracted by dimension reduction method which were mapped to the high-dimension space by muti-kernel function mapping.The high-dimension characteristic matrixes were trained by K-SVD method and the corresponding feature dictionary was obtained respectively.Finally,the test samples representing were trained and classified by l2,1 minimization sparse coefficient.The experiment results showed that recognition rate was improved obviously through this approach,and the poor-effect to maize variety identification from partial occlusion can be eliminated effectively. 展开更多
关键词 multi-kernel sparse representation dictionary learning maize classification
原文传递
Learning multi-kernel multi-view canonical correlations for image recognition 被引量:1
10
作者 Yun-Hao Yuan Yun Li +4 位作者 Jianjun Liu Chao-Feng Li Xiao-Bo Shen Guoqing Zhang Quan-Sen Sun 《Computational Visual Media》 2016年第2期153-162,共10页
In this paper, we propose a multi-kernel multi-view canonical correlations(M2CCs) framework for subspace learning. In the proposed framework,the input data of each original view are mapped into multiple higher dimensi... In this paper, we propose a multi-kernel multi-view canonical correlations(M2CCs) framework for subspace learning. In the proposed framework,the input data of each original view are mapped into multiple higher dimensional feature spaces by multiple nonlinear mappings determined by different kernels. This makes M2 CC can discover multiple kinds of useful information of each original view in the feature spaces. With the framework, we further provide a specific multi-view feature learning method based on direct summation kernel strategy and its regularized version. The experimental results in visual recognition tasks demonstrate the effectiveness and robustness of the proposed method. 展开更多
关键词 image RECOGNITION CANONICAL correlation multiple KERNEL LEARNING MULTI-VIEW data FEATURE LEARNING
原文传递
基于BA-MKELM的微电网故障识别与定位 被引量:1
11
作者 吴忠强 卢雪琴 《计量学报》 CSCD 北大核心 2024年第2期253-260,共8页
提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位... 提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位模型,并采用贝叶斯算法对多核极限学习机相关参数进行优化,进一步提高模型的逼近能力。为了验证所提模型的故障识别与定位性能,选用极限学习机和多核极限学习机分别建立故障诊断模型进行比较分析。实验结果表明,所提方法能够高性能地识别和定位微电网中任何类型的故障,识别和定位精度更高。 展开更多
关键词 电学计量 微电网线路 故障识别和定位 贝叶斯算法 多核极限学习机 小波包分解
下载PDF
多向加权Tsallis熵最大化导向的自动阈值分割方法 被引量:1
12
作者 邹耀斌 邓世成 +3 位作者 孟祥丹 周欢 孙水发 陈鹏 《电子学报》 EI CAS CSCD 北大核心 2024年第1期129-143,共15页
受噪声或随机细节、目标和背景的大小比例、成像时的点扩散等不同因素的影响,许多图像的灰度直方图呈现为无模态、单模态、双模态或者多模态样式.为了在统一框架内处理这4种不同模态情形下的自动阈值选择问题,本文提出了一种多向加权Tsa... 受噪声或随机细节、目标和背景的大小比例、成像时的点扩散等不同因素的影响,许多图像的灰度直方图呈现为无模态、单模态、双模态或者多模态样式.为了在统一框架内处理这4种不同模态情形下的自动阈值选择问题,本文提出了一种多向加权Tsallis熵最大化导向的自动阈值分割方法(Multi-directional Weighted Tsallis Entropy,MWTE).基于新设计的反正切方向性卷积核的多尺度乘积效应,该方法将不同模态的灰度直方图转化为统一的单模态右偏灰度直方图.在4个不同方向上提取出这种特殊的单模态右偏灰度直方图后,通过多向加权策略构建出与原始图像灰度值紧密相关的加权Tsallis熵目标函数,并以该目标函数取最大值时对应的灰度值作为最终分割阈值.本文将提出的方法和3个阈值分割方法、1个软分割方法、1个活动轮廓分割方法以及1个自动聚类分割方法进行了比较.在4种不同模态情形下的4幅合成图像和50幅真实世界图像上的实验结果表明,本文提出的方法虽然在计算效率方面不占有优势,但它对不同模态的测试图像具有更稳健的分割适应性,且在量化分割精度所用的马修斯相关系数方面优于其他6个分割方法. 展开更多
关键词 阈值分割 Tsallis熵差 加权Tsallis熵 反正切方向性卷积核 多尺度乘积效应 马修斯相关系数
下载PDF
基于多核模糊条件熵的多类型混合数据属性约简算法
13
作者 李俊霞 田勇 汤安 《电子器件》 CAS 2024年第2期483-489,共7页
对数据进行有效属性约简是数据挖掘中一个具有挑战性的任务。当前,粗糙集理论是构造属性约简的一种常用方法。然而,现有的属性约简方法都侧重于单类型的数据,对现实环境下多类型混合的数据并不适用。为了解决这一问题,提出一种多核模糊... 对数据进行有效属性约简是数据挖掘中一个具有挑战性的任务。当前,粗糙集理论是构造属性约简的一种常用方法。然而,现有的属性约简方法都侧重于单类型的数据,对现实环境下多类型混合的数据并不适用。为了解决这一问题,提出一种多核模糊条件熵的多类型混合数据属性约简算法。首先,针对标记型、数值型、区间型和集值型混合的多类型数据,提出了一种多核模糊相似关系。然后,基于这种多核模糊相似关系,定义了一种多核模糊条件熵模型,并讨论了它的单调性和有界性。最后,利用多核模糊条件熵的单调性提出了一种多类型混合数据的属性约简算法。通过UCI数据集的实验分析验证了该算法的有效性。 展开更多
关键词 粗糙集 属性约简 混合型数据 模糊关系 多核模糊条件熵
下载PDF
基于GMPE和GWO-MKELM算法的往复压缩机轴承故障诊断
14
作者 李彦阳 王金东 曲孝海 《科学技术与工程》 北大核心 2024年第23期9842-9847,共6页
针对往复压缩机内部结构复杂,轴承间隙故障特征提取困难和识别准确率不高等问题,提出了多尺度排列熵和多核极限学习机混合算法的智能诊断新方法。首先,针对多尺度排列熵在多尺度过程中,利用均值粗粒化的方式在一定程度上“中和”了原始... 针对往复压缩机内部结构复杂,轴承间隙故障特征提取困难和识别准确率不高等问题,提出了多尺度排列熵和多核极限学习机混合算法的智能诊断新方法。首先,针对多尺度排列熵在多尺度过程中,利用均值粗粒化的方式在一定程度上“中和”了原始信号的动力学突变行为,降低了熵值分析的准确性,提出了一种广义多尺度排列熵算法;然后,为解决核极限学习机处理复杂数据样本分类存在的局限性,将高斯核函数、多项式核函数和感知器核函数进行线性叠加,构建混合核函数,提出了多核极限学习机模型。仿真实验结果表明,该故障诊断方法识别准确率高达98%,高效地实现了轴承不同种类故障的智能诊断。 展开更多
关键词 往复压缩机 灰狼优化算法 广义多尺度排列熵 多核极限学习机 故障诊断
下载PDF
基于ARO-MKELM的微电网攻击检测
15
作者 吴忠强 张伟一 《计量学报》 CSCD 北大核心 2024年第10期1444-1452,共9页
智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人... 智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人工兔群优化算法优化多核极限学习机的交流微电网虚假数据注入攻击检测方法。在传统极限学习机中引入组合核函数以提升检测模型的学习能力和泛化能力,并采用具有强全局搜索能力的人工兔群优化算法优化多核极限学习机的核函数参数及正则化系数,进一步提升检测模型的检测精度。利用非训练样本内幅值为55和95的阶跃攻击信号进行仿真验证,检测准确率范围分别达到了(93.44~94.64)%和(98.11~99.23)%,与其他检测模型进行对比分析,验证了所提方法的优越性。 展开更多
关键词 电学计量 交流微电网 虚假数据注入 人工兔群优化算法 多核极限学习机
下载PDF
计及随机变量相关性的多点线性化概率潮流计算 被引量:1
16
作者 叶希 王彦沣 +3 位作者 黄杨 廖帮昆 欧阳雪彤 文云峰 《电力系统及其自动化学报》 CSCD 北大核心 2024年第1期37-45,共9页
为满足考虑源荷双侧强不确定性场景的“双高”电力系统潮流分析计算需求,提出一种新型的概率潮流计算方法。基于核密度估计建立输入随机变量的概率分布模型,构建Copula函数刻画多维随机输入变量间的相关性,获取更加符合系统实际运行情... 为满足考虑源荷双侧强不确定性场景的“双高”电力系统潮流分析计算需求,提出一种新型的概率潮流计算方法。基于核密度估计建立输入随机变量的概率分布模型,构建Copula函数刻画多维随机输入变量间的相关性,获取更加符合系统实际运行情况的样本数据。引入多点线性化潮流计算方法,在降低非线性潮流计算量的同时减小单点线性化潮流计算的截断误差。在IEEE-30节点系统上进行算例测试,验证所提方法的准确性和有效性。 展开更多
关键词 蒙特卡洛模拟 概率潮流 核密度估计 多点线性化 COPULA理论 新能源
下载PDF
高效多刀位推进式全自动坚果取仁装置应用研究
17
作者 毕晓菲 王情雄 +4 位作者 付兴飞 张静 李贵平 胡发广 龚姝 《农产品加工》 2024年第1期112-114,共3页
坚果取仁是坚果加工过程中一道重要工序,取仁装置是该工序的主要设备。传统取仁装置分为人工取仁和人工协同取仁装置取仁,存在费时费力、自动化程度低、进料不均、效率低、质量差、易堵塞、不防滑等缺点。根据坚果取仁工艺存在的问题,... 坚果取仁是坚果加工过程中一道重要工序,取仁装置是该工序的主要设备。传统取仁装置分为人工取仁和人工协同取仁装置取仁,存在费时费力、自动化程度低、进料不均、效率低、质量差、易堵塞、不防滑等缺点。根据坚果取仁工艺存在的问题,研制出了多刀位推进式全自动坚果取仁装置,具有进料均匀、全自动、取仁效率高、取仁质量好、省时省力、不易堵塞和打滑等优点,经济效益和社会效益较好,有显著的推广应用前景。 展开更多
关键词 澳洲坚果 多刀位推进式全自动取仁设备 应用 研究
下载PDF
基于时空多图融合的交通流量预测
18
作者 顾焰杰 张英俊 +2 位作者 刘晓倩 周围 孙威 《计算机应用》 CSCD 北大核心 2024年第8期2618-2625,共8页
交通预测是智能交通系统(ITS)的核心任务,准确的交通流量预测(TFF)可以大幅提高公共资源的利用效率。针对现有多图神经网络模型对上下文信息使用不足、图融合方法不平衡和只考虑静态空间关系等问题,提出基于时空多图融合(STMGF)的TFF模... 交通预测是智能交通系统(ITS)的核心任务,准确的交通流量预测(TFF)可以大幅提高公共资源的利用效率。针对现有多图神经网络模型对上下文信息使用不足、图融合方法不平衡和只考虑静态空间关系等问题,提出基于时空多图融合(STMGF)的TFF模型。首先,通过融合空间图、语义图和空间语义图提取不同区域的不同空间相关性,并利用空间注意力机制和图注意力机制融合不同的图结构以动态学习不同邻居的重要性;然后,使用多核时间注意力机制同时捕获局部时间依赖性和全局时间依赖性;最后,使用多层感知机预测交通流量,得到最终预测值。在NYCTaxi和NYCBike数据集验证模型的有效性。实验结果表明,在NYCBike数据集的36步预测任务中,与时空图卷积神经网络(STGCN)、基于时空注意力的图神经网络(ASTGNN)、元图卷积递归网络(MegaCRN)相比,所提模型的均方根误差(RMSE)分别降低了8.46%、2.70%和2.20%。 展开更多
关键词 多图融合 多核注意力 空间注意力 图注意力 深度学习
下载PDF
基于多核LSSVM的谷物蛋白质二级结构预测与优化
19
作者 梁俊 刘静 +1 位作者 管骁 陈滢滢 《食品与生物技术学报》 CAS CSCD 北大核心 2024年第7期117-125,共9页
蛋白质的二级结构对其空间结构和功能有着极其重要的影响,利用机器学习方法进行谷物蛋白质二级结构预测是生物和食品领域的重要研究内容。作者在现有蛋白质数据库中选取玉米、小麦、大豆的谷物蛋白质,使用多特征融合方式对蛋白质序列进... 蛋白质的二级结构对其空间结构和功能有着极其重要的影响,利用机器学习方法进行谷物蛋白质二级结构预测是生物和食品领域的重要研究内容。作者在现有蛋白质数据库中选取玉米、小麦、大豆的谷物蛋白质,使用多特征融合方式对蛋白质序列进行特征提取,提出将多核学习与最小二乘支持向量机(LSSVM)相结合,以多个核函数的线性加权组合代替传统单一核函数,利用核权重调整融合效果,构建多核LSSVM模型预测谷物蛋白质二级结构。使用粒子群优化算法(PSO)对模型超参数进行优化,寻找最佳超参数组合提升模型预测性能。研究结果表明,多核LSSVM模型能够改善单一核函数高维映射的局限性,融合各核函数优势,通过PSO算法获取最佳超参数组合。该模型结合多特征提取方式显著提高了谷物蛋白质二级结构预测的Q_(3)准确率。 展开更多
关键词 谷物 蛋白质二级结构 多核 最小二乘支持向量机 粒子群算法
下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究
20
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部