针对现有的基于知识图谱的推荐算法往往侧重于物品端邻居信息,而忽视用户端兴趣特征问题,提出一种融合图注意力和知识图卷积网络的双端邻居推荐算法。首先,在用户端,以用户的历史兴趣作为种子,在知识图中迭代传播偏好,融合图注意力形成...针对现有的基于知识图谱的推荐算法往往侧重于物品端邻居信息,而忽视用户端兴趣特征问题,提出一种融合图注意力和知识图卷积网络的双端邻居推荐算法。首先,在用户端,以用户的历史兴趣作为种子,在知识图中迭代传播偏好,融合图注意力形成用户潜在兴趣向量;其次,在物品端,结合图卷积网络在知识图遍历路径中聚合重要邻域信息,获得物品偏好聚合向量;同时在损失函数中融入标签平滑正则化项;最后使用内积运算得到用户对物品的喜好预测。通过在公开数据集下的实验结果表明,文章算法与其他基准算法相比,在CTR(Click Through Rate)和Top-K(对模型给出的前K个预测结果进行性能评估)推荐场景下的评估指标AUC(Area Under Curve)、F_(1)(F_(1)-score)、recall(召回率)均有所提高。文章该算法具有较好的推荐性能和可解释性。展开更多
知识图谱嵌入技术已在推荐系统领域引起广泛关注,将结构化知识图谱中的信息融入到推荐模型中,可以提高推荐的个性化程度。然而,因为初始数据的不准确性会导致推荐结果不正确,现存的知识图谱推荐模型中仍存在误差传播问题。针对这个问题...知识图谱嵌入技术已在推荐系统领域引起广泛关注,将结构化知识图谱中的信息融入到推荐模型中,可以提高推荐的个性化程度。然而,因为初始数据的不准确性会导致推荐结果不正确,现存的知识图谱推荐模型中仍存在误差传播问题。针对这个问题,该文提出了RR-KGE模型,由知识图谱嵌入模块和推荐算法模块组成;其中聚焦于知识图谱嵌入框架,将规则嵌入和知识图谱嵌入进行联合学习,通过规则给予模型更多的约束条件,以减少误差传播;并结合此框架将推荐算法ALS(Alternating Least Squares)和RNN(Recurrent Neural Network)相融合来获得更加精确的推荐结果;最后将RR-KGE与不同基准模型进行比较,在两个数据集上多项指标均优于对比模型,证明了推荐方法的有效性。展开更多
文摘针对现有的基于知识图谱的推荐算法往往侧重于物品端邻居信息,而忽视用户端兴趣特征问题,提出一种融合图注意力和知识图卷积网络的双端邻居推荐算法。首先,在用户端,以用户的历史兴趣作为种子,在知识图中迭代传播偏好,融合图注意力形成用户潜在兴趣向量;其次,在物品端,结合图卷积网络在知识图遍历路径中聚合重要邻域信息,获得物品偏好聚合向量;同时在损失函数中融入标签平滑正则化项;最后使用内积运算得到用户对物品的喜好预测。通过在公开数据集下的实验结果表明,文章算法与其他基准算法相比,在CTR(Click Through Rate)和Top-K(对模型给出的前K个预测结果进行性能评估)推荐场景下的评估指标AUC(Area Under Curve)、F_(1)(F_(1)-score)、recall(召回率)均有所提高。文章该算法具有较好的推荐性能和可解释性。
文摘知识图谱嵌入技术已在推荐系统领域引起广泛关注,将结构化知识图谱中的信息融入到推荐模型中,可以提高推荐的个性化程度。然而,因为初始数据的不准确性会导致推荐结果不正确,现存的知识图谱推荐模型中仍存在误差传播问题。针对这个问题,该文提出了RR-KGE模型,由知识图谱嵌入模块和推荐算法模块组成;其中聚焦于知识图谱嵌入框架,将规则嵌入和知识图谱嵌入进行联合学习,通过规则给予模型更多的约束条件,以减少误差传播;并结合此框架将推荐算法ALS(Alternating Least Squares)和RNN(Recurrent Neural Network)相融合来获得更加精确的推荐结果;最后将RR-KGE与不同基准模型进行比较,在两个数据集上多项指标均优于对比模型,证明了推荐方法的有效性。