High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowq...Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack).展开更多
Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating...Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost.展开更多
Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emerge...Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky-Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework.展开更多
On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detect...On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models.展开更多
To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transfo...To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transform )and background difference. In the tracking step, the Kalman filter and scale parameter are used first to estimate the object position and bounding box. Then, the center-association-based projection ratio and region-association-based occlusion ratio are defined and combined to judge object behaviours. Finally, the tracking scheme and Kalman parameters are adaptively adjusted according to object behaviour. Under occlusion, partial observability is utilized to obtain the object measurements and optimum box dimensions. This method is robust in tracking mobile objects under such situations as occlusion, new appearing and stablization, etc. Experimental results show that the proposed method is efficient.展开更多
Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly.In this paper,therefore,we propose...Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly.In this paper,therefore,we propose a novel monitoring system using an Artificial Intelligence of Things(AIoT)technique combining artificial intelligence and Internet of Things(IoT).The proposed system consists of AIoT edge devices and a central monitoring server.First,an AIoT edge device extracts video frame images from a CCTV camera installed in a pig pen by a frame extraction method,detects multiple pigs in the images by a faster region-based convolutional neural network(RCNN)model,and tracks them by an object center-point tracking algorithm(OCTA)based on bounding box regression outputs of the faster RCNN.Finally,it sends multi-pig tracking images to the central monitoring server,which alerts them to pig farmers through a social networking service(SNS)agent in cooperation with an oneM2M-compliant IoT alerting method.Experimental results showed that the multi-pig tracking method achieved the multi-object tracking accuracy performance of about 77%.In addition,we verified alerting operation by confirming the images received in the SNS smartphone application.展开更多
A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically...A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed.展开更多
Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lif...Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency.展开更多
An approach to track multiple objects in crowded scenes with long-term partial occlusions is proposed. Tracking-by-detection is a successful strategy to address the task of tracking multiple objects in unconstrained s...An approach to track multiple objects in crowded scenes with long-term partial occlusions is proposed. Tracking-by-detection is a successful strategy to address the task of tracking multiple objects in unconstrained scenarios,but an obvious shortcoming of this method is that most information available in image sequences is simply ignored due to thresholding weak detection responses and applying non-maximum suppression. This paper proposes a multi-label conditional random field( CRF) model which integrates the superpixel information and detection responses into a unified energy optimization framework to handle the task of tracking multiple targets. A key characteristic of the model is that the pairwise potential is constructed to enforce collision avoidance between objects,which can offer the advantage to improve the tracking performance in crowded scenes. Experiments on standard benchmark databases demonstrate that the proposed algorithm significantly outperforms the state-of-the-art tracking-by-detection methods.展开更多
In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion ...In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
In this paper, we present an investigation on the tracking performances of feedback control as a function of reference signals. We use multi-objective optimal designs of feedback controls as a fair basis for comparing...In this paper, we present an investigation on the tracking performances of feedback control as a function of reference signals. We use multi-objective optimal designs of feedback controls as a fair basis for comparing different control designs, and examine step, ramp, and periodic signals at various frequencies. Through comparing the tracking performances of controls designed with different reference signals,we find that the controls designed with ramp signals perform better in tracking step and ramp references than those designed with step signals. To track periodic signals, we find that the controls designed with periodic signals at the same frequency generally provide the best performance, and those designed with step and ramp signals perform comparably.展开更多
The multi-armored target tracking(MATT)plays a crucial role in coordinated tracking and strike.The occlusion and insertion among targets and target scale variation is the key problems in MATT.Most stateof-the-art mult...The multi-armored target tracking(MATT)plays a crucial role in coordinated tracking and strike.The occlusion and insertion among targets and target scale variation is the key problems in MATT.Most stateof-the-art multi-object tracking(MOT)works adopt the tracking-by-detection strategy,which rely on compute-intensive sliding window or anchoring scheme in detection module and neglect the target scale variation in tracking module.In this work,we proposed a more efficient and effective spatial-temporal attention scheme to track multi-armored target in the ground battlefield.By simulating the structure of the retina,a novel visual-attention Gabor filter branch is proposed to enhance detection.By introducing temporal information,some online learned target-specific Convolutional Neural Networks(CNNs)are adopted to address occlusion.More importantly,we built a MOT dataset for armored targets,called Armored Target Tracking dataset(ATTD),based on which several comparable experiments with state-ofthe-art methods are conducted.Experimental results show that the proposed method achieves outstanding tracking performance and meets the actual application requirements.展开更多
In this paper, the problem of bearings-only maneuvering target tracking in sensors network is investigated. Two objectives are proposed and optimized by the ant colony optimization (ACO), then two kinds of node sear...In this paper, the problem of bearings-only maneuvering target tracking in sensors network is investigated. Two objectives are proposed and optimized by the ant colony optimization (ACO), then two kinds of node searching strategies of the ACO algorithm are presented. On the basis of the nodes determined by the ACO algorithm, the interacting multiple models extended Kalman filter (IMMEKF) for the multi-sensor bearings-only maneuvering target tracking is introduced. Simulation results indicate that the proposed ACO algorithm performs better than the Closest Nodes method. Furthermore, the Strategy 2 of the two given strategies is preferred in terms of the requirement of real time.展开更多
A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects...A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects ranging from 8 to 14 mm.This article examines methods and tools for recognizing and tracking the class of small moving objects,such as ants.To fulfill those aims,a customized You Only Look Once Ants Recognition(YOLO_AR)Convolutional Neural Network(CNN)has been trained to recognize Messor Structor ants in the laboratory using the LabelImg object marker tool.The proposed model is an extension of the You Only Look Once v4(Yolov4)512×512 model with an additional Self Regularized Non–Monotonic(Mish)activation function.Additionally,the scalable solution for continuous object recognizing and tracking was implemented.This solution is based on the OpenDatacam system,with extended Object Tracking modules that allow for tracking and counting objects that have crossed the custom boundary line.During the study,the methods of the alignment algorithm for finding the trajectory of moving objects were modified.I discovered that the Hungarian algorithm showed better results in tracking small objects than the K–D dimensional tree(k-d tree)matching algorithm used in OpenDataCam.Remarkably,such an algorithm showed better results with the implemented YOLO_AR model due to the lack of False Positives(FP).Therefore,I provided a new tracker module with a Hungarian matching algorithm verified on the Multiple Object Tracking(MOT)benchmark.Furthermore,additional customization parameters for object recognition and tracking results parsing and filtering were added,like boundary angle threshold(BAT)and past frames trajectory prediction(PFTP).Experimental tests confirmed the results of the study on a mobile device.During the experiment,parameters such as the quality of recognition and tracking of moving objects,the PFTP and BAT,and the configuration parameters of the neural network and boundary line model were analyzed.The results showed an increased tracking accuracy with the proposed methods by 50%.The study results confirmed the relevance of the topic and the effectiveness of the implemented methods and tools.展开更多
在多目标跟踪任务中,外界噪声的干扰会导致传统方法的系统建模不可靠,从而降低目标位置预测的准确性;而密集人群引起的拥挤和遮挡问题则会严重影响目标外观的可靠性,导致错误的身份关联.为了解决这些问题,本文提出一种多目标跟踪算法Ecs...在多目标跟踪任务中,外界噪声的干扰会导致传统方法的系统建模不可靠,从而降低目标位置预测的准确性;而密集人群引起的拥挤和遮挡问题则会严重影响目标外观的可靠性,导致错误的身份关联.为了解决这些问题,本文提出一种多目标跟踪算法Ecsort.该算法在传统运动预测的基础上,引入噪声补偿模块,降低噪声干扰引起的误差,提高位置预测的准确性.其次,引入特征相似度匹配模块,通过学习目标的判别性外观特征,并结合运动线索和判别性外观特征的优势,从而实现精确的身份关联.通过在多目标跟踪基准数据集上进行的大量实验结果表明,与基线模型相比,该方法在MOT17测试集上的IDF1 (ID F1 score)、HOTA (higher order tracking accuracy)、AssA(association accuracy)、DetA (detection accuracy)分别提高了1.1%、0.5%、0.6%、0.3%,在MOT20测试集上的IDF1、HOTA、AssA、DetA分别提高了2.3%、1.9%、3.4%、0.2%.展开更多
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金supported by the National Natural Science Foundation of China(No.62202143)Key Research and Promotion Projects of Henan Province(Nos.232102240023,232102210063,222102210040).
文摘Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack).
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFA0702501in part by NSFC under Grant 41974126,41674116 and 42004101。
文摘Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost.
文摘Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky-Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework.
文摘On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models.
基金The National Natural Science Foundation of China(No.60574006,60804017)
文摘To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transform )and background difference. In the tracking step, the Kalman filter and scale parameter are used first to estimate the object position and bounding box. Then, the center-association-based projection ratio and region-association-based occlusion ratio are defined and combined to judge object behaviours. Finally, the tracking scheme and Kalman parameters are adaptively adjusted according to object behaviour. Under occlusion, partial observability is utilized to obtain the object measurements and optimum box dimensions. This method is robust in tracking mobile objects under such situations as occlusion, new appearing and stablization, etc. Experimental results show that the proposed method is efficient.
基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)Grant funded by the Korea government(MSIT)(No.2018-0-00387Development of ICT based Intelligent Smart Welfare Housing System for the Prevention and Control of Livestock Disease).
文摘Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly.In this paper,therefore,we propose a novel monitoring system using an Artificial Intelligence of Things(AIoT)technique combining artificial intelligence and Internet of Things(IoT).The proposed system consists of AIoT edge devices and a central monitoring server.First,an AIoT edge device extracts video frame images from a CCTV camera installed in a pig pen by a frame extraction method,detects multiple pigs in the images by a faster region-based convolutional neural network(RCNN)model,and tracks them by an object center-point tracking algorithm(OCTA)based on bounding box regression outputs of the faster RCNN.Finally,it sends multi-pig tracking images to the central monitoring server,which alerts them to pig farmers through a social networking service(SNS)agent in cooperation with an oneM2M-compliant IoT alerting method.Experimental results showed that the multi-pig tracking method achieved the multi-object tracking accuracy performance of about 77%.In addition,we verified alerting operation by confirming the images received in the SNS smartphone application.
基金Supported by the National Natural Science Foundation of China(6160303040,61433003)Yunnan Applied Basic Research Project of China(201701CF00037)Yunnan Provincial Science and Technology Department Key Research Program(Engineering)(2018BA070)
文摘A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed.
基金Supported by the National Natural Science Foundation of China(No.90820302,60805027)the Research Fund for Doctoral Program of Higher Education(No.200805330005)the Academician Foundation of Hunan(No.2009FJ4030)
文摘Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency.
基金Supported by the National Natural Science Foundation of China(61471225)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2014RCJJ055)
文摘An approach to track multiple objects in crowded scenes with long-term partial occlusions is proposed. Tracking-by-detection is a successful strategy to address the task of tracking multiple objects in unconstrained scenarios,but an obvious shortcoming of this method is that most information available in image sequences is simply ignored due to thresholding weak detection responses and applying non-maximum suppression. This paper proposes a multi-label conditional random field( CRF) model which integrates the superpixel information and detection responses into a unified energy optimization framework to handle the task of tracking multiple targets. A key characteristic of the model is that the pairwise potential is constructed to enforce collision avoidance between objects,which can offer the advantage to improve the tracking performance in crowded scenes. Experiments on standard benchmark databases demonstrate that the proposed algorithm significantly outperforms the state-of-the-art tracking-by-detection methods.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金supported by the National Natural Science Foundation of China (Nos.11172197,11332008 and 11572215)a Grant from the University of California Institute for Mexico and the United States (UC MEXUS)the Consejo Nacional de Cienciay Tecnología de México (CONACYT) through the project "Hybridizing Set Oriented Methods and Evolutionary Strategies to Obtain Fast and Reliable Multi-objective Optimization Algorithms"
文摘In this paper, we present an investigation on the tracking performances of feedback control as a function of reference signals. We use multi-objective optimal designs of feedback controls as a fair basis for comparing different control designs, and examine step, ramp, and periodic signals at various frequencies. Through comparing the tracking performances of controls designed with different reference signals,we find that the controls designed with ramp signals perform better in tracking step and ramp references than those designed with step signals. To track periodic signals, we find that the controls designed with periodic signals at the same frequency generally provide the best performance, and those designed with step and ramp signals perform comparably.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFC0802904)National Natural Science Foundation of China(No.61671470)+1 种基金Natural Science Foundation of Jiangsu Province(BK20161470)62nd batch of funded projects of China Postdoctoral Science Foundation(No.2017M623423).
文摘The multi-armored target tracking(MATT)plays a crucial role in coordinated tracking and strike.The occlusion and insertion among targets and target scale variation is the key problems in MATT.Most stateof-the-art multi-object tracking(MOT)works adopt the tracking-by-detection strategy,which rely on compute-intensive sliding window or anchoring scheme in detection module and neglect the target scale variation in tracking module.In this work,we proposed a more efficient and effective spatial-temporal attention scheme to track multi-armored target in the ground battlefield.By simulating the structure of the retina,a novel visual-attention Gabor filter branch is proposed to enhance detection.By introducing temporal information,some online learned target-specific Convolutional Neural Networks(CNNs)are adopted to address occlusion.More importantly,we built a MOT dataset for armored targets,called Armored Target Tracking dataset(ATTD),based on which several comparable experiments with state-ofthe-art methods are conducted.Experimental results show that the proposed method achieves outstanding tracking performance and meets the actual application requirements.
基金This paper was supported by the Natural Science Foundation of Jiangsu province of China (BK2004132)
文摘In this paper, the problem of bearings-only maneuvering target tracking in sensors network is investigated. Two objectives are proposed and optimized by the ant colony optimization (ACO), then two kinds of node searching strategies of the ACO algorithm are presented. On the basis of the nodes determined by the ACO algorithm, the interacting multiple models extended Kalman filter (IMMEKF) for the multi-sensor bearings-only maneuvering target tracking is introduced. Simulation results indicate that the proposed ACO algorithm performs better than the Closest Nodes method. Furthermore, the Strategy 2 of the two given strategies is preferred in terms of the requirement of real time.
文摘A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects ranging from 8 to 14 mm.This article examines methods and tools for recognizing and tracking the class of small moving objects,such as ants.To fulfill those aims,a customized You Only Look Once Ants Recognition(YOLO_AR)Convolutional Neural Network(CNN)has been trained to recognize Messor Structor ants in the laboratory using the LabelImg object marker tool.The proposed model is an extension of the You Only Look Once v4(Yolov4)512×512 model with an additional Self Regularized Non–Monotonic(Mish)activation function.Additionally,the scalable solution for continuous object recognizing and tracking was implemented.This solution is based on the OpenDatacam system,with extended Object Tracking modules that allow for tracking and counting objects that have crossed the custom boundary line.During the study,the methods of the alignment algorithm for finding the trajectory of moving objects were modified.I discovered that the Hungarian algorithm showed better results in tracking small objects than the K–D dimensional tree(k-d tree)matching algorithm used in OpenDataCam.Remarkably,such an algorithm showed better results with the implemented YOLO_AR model due to the lack of False Positives(FP).Therefore,I provided a new tracker module with a Hungarian matching algorithm verified on the Multiple Object Tracking(MOT)benchmark.Furthermore,additional customization parameters for object recognition and tracking results parsing and filtering were added,like boundary angle threshold(BAT)and past frames trajectory prediction(PFTP).Experimental tests confirmed the results of the study on a mobile device.During the experiment,parameters such as the quality of recognition and tracking of moving objects,the PFTP and BAT,and the configuration parameters of the neural network and boundary line model were analyzed.The results showed an increased tracking accuracy with the proposed methods by 50%.The study results confirmed the relevance of the topic and the effectiveness of the implemented methods and tools.
文摘在多目标跟踪任务中,外界噪声的干扰会导致传统方法的系统建模不可靠,从而降低目标位置预测的准确性;而密集人群引起的拥挤和遮挡问题则会严重影响目标外观的可靠性,导致错误的身份关联.为了解决这些问题,本文提出一种多目标跟踪算法Ecsort.该算法在传统运动预测的基础上,引入噪声补偿模块,降低噪声干扰引起的误差,提高位置预测的准确性.其次,引入特征相似度匹配模块,通过学习目标的判别性外观特征,并结合运动线索和判别性外观特征的优势,从而实现精确的身份关联.通过在多目标跟踪基准数据集上进行的大量实验结果表明,与基线模型相比,该方法在MOT17测试集上的IDF1 (ID F1 score)、HOTA (higher order tracking accuracy)、AssA(association accuracy)、DetA (detection accuracy)分别提高了1.1%、0.5%、0.6%、0.3%,在MOT20测试集上的IDF1、HOTA、AssA、DetA分别提高了2.3%、1.9%、3.4%、0.2%.