In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three tim...In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three timing inter- val features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. The proposed approach optimizes the relevant parameters of SVM classifier through an intelligent algorithm using parti- cle swarm optimization (PSO). These parameters are: Gaus- sian radial basis function (GRBF) kernel parameter o- and C penalty parameter of SVM classifier. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed power spectral-based hybrid par- ticle swarm optimization-support vector machine (SVMPSO) classification method offers significantly improved perfor- mance over the SVM which has constant and manually ex- tracted parameter.展开更多
文摘In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three timing inter- val features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. The proposed approach optimizes the relevant parameters of SVM classifier through an intelligent algorithm using parti- cle swarm optimization (PSO). These parameters are: Gaus- sian radial basis function (GRBF) kernel parameter o- and C penalty parameter of SVM classifier. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed power spectral-based hybrid par- ticle swarm optimization-support vector machine (SVMPSO) classification method offers significantly improved perfor- mance over the SVM which has constant and manually ex- tracted parameter.