The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this...The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this evaluation is difficult since it relies on an in-depth understanding of the operating mechanism of SCCSs, and few existing methods can be used to conduct the evaluation, due to the lack of full-scale consideration of the multiple factors related to the production operation. In this study, three quantitative models were developed, and the multiprocess collaborative operation level was evaluated through the laminar-flow operation degree, the process matching degree, and the scheduling strategy availability degree. Based on the evaluation models for the laminar-flow operation and process matching levels, this study investigated the production status of two steelmaking plants, plants A and B, based on actual production data. The average laminar-flow operation(process matching) degrees of SCCSs were obtained as 0.638(0.610) and 1.000(0.759) for plants A and B, respectively, for the period of April to July 2019. Then, a scheduling strategy based on the optimization of the furnace-caster coordinating mode was suggested for plant A. Simulation experiments showed higher availability than the greedy-based and manual strategies. After the proposed scheduling strategy was applied,the average process matching degree of the SCCS of plant A increased by 4.6% for the period of September to November 2019. The multi-process collaborative operation level was improved with fewer adjustments and interruptions in casting.展开更多
Simulating charged particle motion through the elements is necessary to understand modern particle accelerators. The particle numbers and the circling turns in a synchrotron are huge, and a simulation can be timeconsu...Simulating charged particle motion through the elements is necessary to understand modern particle accelerators. The particle numbers and the circling turns in a synchrotron are huge, and a simulation can be timeconsuming. Open multi-processing(Open MP) is a convenient method to speed up the computing of multi-cores for computers based on share memory model. Using message passing interface(MPI) which is based on nonuniform memory access architecture, a coarse grain parallel algorithm is set up for the Accelerator Toolbox(AT)for dynamic tracking processes. The computing speedup of the tracking process is 3.77 times with a quad-core CPU computer and the speed almost grows linearly with the number of CPU.展开更多
In the aerospace industry,integrated aluminium alloy plates and stiffened panels with high accuracy and performance attract significant interest.To manufacture these panels as integrity with high accuracy,multiple pro...In the aerospace industry,integrated aluminium alloy plates and stiffened panels with high accuracy and performance attract significant interest.To manufacture these panels as integrity with high accuracy,multiple processes need to be utilised,such as machining,welding and forming.During the whole manufacturing chain,residual stresses can be generated and redistributed in the components among different processes.The residual stress would significantly affect the shapes and properties of the final products.Currently,these great effects are not well considered in the design and manufacturing processes.This paper aims to draw a general understanding of the residual stress generated in the pre-manufacturing processes and its effects on subsequent manufacturing processes.The mechanisms and distributions of residual stresses generated in typical premanufacturing processes of structural panels,including machining,welding and additive manufacturing(AM),are firstly summarised.The detailed effects of generated residual stresses on distortion and application properties in subsequent manufacturing processes are then concluded.In addition,current methods developed for the investigation of residual stress effect in multi-processes manufacturing are critically reviewed,including experimental,analytical,finite element(FE)and machine learning methods.Furthermore,the future development trend of methods for residual stress consideration and control in the design of manufacturing processes is summarised,providing comprehensive guidance to achieve the high accurate manufacturing of aluminium alloy structural components.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.50874014 and 51974023)the Fundamental Research Funds for Central Universities (No.FRF-BR-17-029A)。
文摘The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this evaluation is difficult since it relies on an in-depth understanding of the operating mechanism of SCCSs, and few existing methods can be used to conduct the evaluation, due to the lack of full-scale consideration of the multiple factors related to the production operation. In this study, three quantitative models were developed, and the multiprocess collaborative operation level was evaluated through the laminar-flow operation degree, the process matching degree, and the scheduling strategy availability degree. Based on the evaluation models for the laminar-flow operation and process matching levels, this study investigated the production status of two steelmaking plants, plants A and B, based on actual production data. The average laminar-flow operation(process matching) degrees of SCCSs were obtained as 0.638(0.610) and 1.000(0.759) for plants A and B, respectively, for the period of April to July 2019. Then, a scheduling strategy based on the optimization of the furnace-caster coordinating mode was suggested for plant A. Simulation experiments showed higher availability than the greedy-based and manual strategies. After the proposed scheduling strategy was applied,the average process matching degree of the SCCS of plant A increased by 4.6% for the period of September to November 2019. The multi-process collaborative operation level was improved with fewer adjustments and interruptions in casting.
基金Supported by the National Natural Science Foundation of China(No11105214)
文摘Simulating charged particle motion through the elements is necessary to understand modern particle accelerators. The particle numbers and the circling turns in a synchrotron are huge, and a simulation can be timeconsuming. Open multi-processing(Open MP) is a convenient method to speed up the computing of multi-cores for computers based on share memory model. Using message passing interface(MPI) which is based on nonuniform memory access architecture, a coarse grain parallel algorithm is set up for the Accelerator Toolbox(AT)for dynamic tracking processes. The computing speedup of the tracking process is 3.77 times with a quad-core CPU computer and the speed almost grows linearly with the number of CPU.
基金co-supported by the National Natural Science Foundation of China(No.52005020)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110851).
文摘In the aerospace industry,integrated aluminium alloy plates and stiffened panels with high accuracy and performance attract significant interest.To manufacture these panels as integrity with high accuracy,multiple processes need to be utilised,such as machining,welding and forming.During the whole manufacturing chain,residual stresses can be generated and redistributed in the components among different processes.The residual stress would significantly affect the shapes and properties of the final products.Currently,these great effects are not well considered in the design and manufacturing processes.This paper aims to draw a general understanding of the residual stress generated in the pre-manufacturing processes and its effects on subsequent manufacturing processes.The mechanisms and distributions of residual stresses generated in typical premanufacturing processes of structural panels,including machining,welding and additive manufacturing(AM),are firstly summarised.The detailed effects of generated residual stresses on distortion and application properties in subsequent manufacturing processes are then concluded.In addition,current methods developed for the investigation of residual stress effect in multi-processes manufacturing are critically reviewed,including experimental,analytical,finite element(FE)and machine learning methods.Furthermore,the future development trend of methods for residual stress consideration and control in the design of manufacturing processes is summarised,providing comprehensive guidance to achieve the high accurate manufacturing of aluminium alloy structural components.