针对测量系统本身导致的脉冲截断给脉冲高度分析带来的挑战,本研究提出一种复合神经网络模型,用于预测产生了截断的脉冲高度。该模型将长短期记忆模型(Long and Short-term Memory,LSTM)嵌入UNet结构,采用模拟脉冲数据集对模型进行训练...针对测量系统本身导致的脉冲截断给脉冲高度分析带来的挑战,本研究提出一种复合神经网络模型,用于预测产生了截断的脉冲高度。该模型将长短期记忆模型(Long and Short-term Memory,LSTM)嵌入UNet结构,采用模拟脉冲数据集对模型进行训练,使用相对误差指标对模型性能进行评估。结果显示:在对模拟脉冲序列进行脉冲高度估计时,UNet-LSTM模型的平均相对误差约为2.31%,相较于传统的梯形成形算法的平均相对误差降低了1.91%;在粉末铁矿样品和粉末岩石样品的实际测量中,不同截断率的实测脉冲序列也进一步验证了UNet-LSTM模型的脉冲高度估计性能,在两种样品、8组离线脉冲序列的高度估计中得到的平均相对误差为2.36%,表明该模型可以准确估计截断脉冲的高度。展开更多
文摘针对测量系统本身导致的脉冲截断给脉冲高度分析带来的挑战,本研究提出一种复合神经网络模型,用于预测产生了截断的脉冲高度。该模型将长短期记忆模型(Long and Short-term Memory,LSTM)嵌入UNet结构,采用模拟脉冲数据集对模型进行训练,使用相对误差指标对模型性能进行评估。结果显示:在对模拟脉冲序列进行脉冲高度估计时,UNet-LSTM模型的平均相对误差约为2.31%,相较于传统的梯形成形算法的平均相对误差降低了1.91%;在粉末铁矿样品和粉末岩石样品的实际测量中,不同截断率的实测脉冲序列也进一步验证了UNet-LSTM模型的脉冲高度估计性能,在两种样品、8组离线脉冲序列的高度估计中得到的平均相对误差为2.36%,表明该模型可以准确估计截断脉冲的高度。