Given the global lack of effective analysis methods for the impact of design parameter tolerance on performance deviation in the vehicle proof-of-concept stage,it is difficult to decompose performance tolerance to des...Given the global lack of effective analysis methods for the impact of design parameter tolerance on performance deviation in the vehicle proof-of-concept stage,it is difficult to decompose performance tolerance to design parameter tolerance.This study proposes a set of consistency analysis methods for vehicle steering performance.The process of consistency analysis and control of automotive performance in the conceptual design phase is proposed for the first time.A vehicle dynamics model is constructed,and the multi-objective optimization software Isight is used to optimize the steering performance of the car.Sensitivity analysis is used to optimize the design performance value.The tolerance interval of the performance is obtained by comparing the original car performance value with the optimized value.With the help of layer-by-layer decomposition theory and interval mathematics,automotive performance tolerance has been decomposed into design parameter tolerance.Through simulation and real vehicle experiments,the validity of the consistency analysis and control method presented in this paper are verified.The decomposition from parameter tolerance to performance tolerance can be achieved at the conceptual design stage.展开更多
This paper introduces uncertainty theory to deal with non-deterministic factors in ranking alternatives. The uncertain variable method (UVM) and the definition of consistency for uncertainty comparison matrices are pr...This paper introduces uncertainty theory to deal with non-deterministic factors in ranking alternatives. The uncertain variable method (UVM) and the definition of consistency for uncertainty comparison matrices are proposed. A simple yet pragmatic approach for testing whether or not an uncertainty comparison matrix is consistent is put forward. In cases where an uncertainty comparison matrix is inconsistent, an algorithm is used to generate consistent matrix. And then the consistent uncertainty comparison matrix can derive the uncertainty weights. The final ranking is given by uncertainty weighs if they are acceptable;otherwise we rely on the ranks of expected values of uncertainty weights instead. Three numerical examples including a hierarchical (AHP) decision problem are examined to illustrate the validity and practicality of the proposed methods.展开更多
By restricting the common replacement axiom schema of ZF to ∑~M-formulae,Professor Zhang Jinwen constructed a series of subsystems of Zennelo-Frankel set theory ZF and he called them ZF^M.Zhao Xi shun show that the c...By restricting the common replacement axiom schema of ZF to ∑~M-formulae,Professor Zhang Jinwen constructed a series of subsystems of Zennelo-Frankel set theory ZF and he called them ZF^M.Zhao Xi shun show that the consistency of ZF^M can be deducted from ZF.Professor Zhang Jinwen raised the question whether the consistency of ZF^M can be deducted from ZF^(M+m(M)) for some m(n)≥1.In this paper,we get a positive solution to Professor Zhang's problem.Moreover,we show that the consistency of ZF^M can be deducted from ZF^(M+3).展开更多
The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory...The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory. The power law scaling relationships between the boundary layer thickness and the surface charge density and the charge fraction of PE chains revealed in the study are in good agreement with the existing analytical result. The curvature effect on the degree of charge compensation of the total amount of charges on the adsorbed PE chains over the surface charges is examined, and a clear understanding of it based on the dependences of the degree of charge compensation on the surface charge density and the charge fraction of PE chains is established.展开更多
Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depen...Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but w...The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.展开更多
Self-assembled nanostructures of lipids and nanoparticles hold great promise for applications in such fields as nanomedicine. This paper uses the self-consistent field theory to investigate the self-assembly behavior ...Self-assembled nanostructures of lipids and nanoparticles hold great promise for applications in such fields as nanomedicine. This paper uses the self-consistent field theory to investigate the self-assembly behavior of lipid molecules and nanoparticles with different shapes in an aqueous solution. It is found that the lipid molecules can form monolayered and bilayered nanostructures around the nanopartieles with different shapes (e.g., triangular, square, hexagonal and octangular). With decreasing the size of nanoparticles or increasing the number of polygon edges, the shape of lipid layers will approach an approximately spherical shape. These findings may help to predict and design novel drug delivery nanocarriers.展开更多
文摘Given the global lack of effective analysis methods for the impact of design parameter tolerance on performance deviation in the vehicle proof-of-concept stage,it is difficult to decompose performance tolerance to design parameter tolerance.This study proposes a set of consistency analysis methods for vehicle steering performance.The process of consistency analysis and control of automotive performance in the conceptual design phase is proposed for the first time.A vehicle dynamics model is constructed,and the multi-objective optimization software Isight is used to optimize the steering performance of the car.Sensitivity analysis is used to optimize the design performance value.The tolerance interval of the performance is obtained by comparing the original car performance value with the optimized value.With the help of layer-by-layer decomposition theory and interval mathematics,automotive performance tolerance has been decomposed into design parameter tolerance.Through simulation and real vehicle experiments,the validity of the consistency analysis and control method presented in this paper are verified.The decomposition from parameter tolerance to performance tolerance can be achieved at the conceptual design stage.
文摘This paper introduces uncertainty theory to deal with non-deterministic factors in ranking alternatives. The uncertain variable method (UVM) and the definition of consistency for uncertainty comparison matrices are proposed. A simple yet pragmatic approach for testing whether or not an uncertainty comparison matrix is consistent is put forward. In cases where an uncertainty comparison matrix is inconsistent, an algorithm is used to generate consistent matrix. And then the consistent uncertainty comparison matrix can derive the uncertainty weights. The final ranking is given by uncertainty weighs if they are acceptable;otherwise we rely on the ranks of expected values of uncertainty weights instead. Three numerical examples including a hierarchical (AHP) decision problem are examined to illustrate the validity and practicality of the proposed methods.
文摘By restricting the common replacement axiom schema of ZF to ∑~M-formulae,Professor Zhang Jinwen constructed a series of subsystems of Zennelo-Frankel set theory ZF and he called them ZF^M.Zhao Xi shun show that the consistency of ZF^M can be deducted from ZF.Professor Zhang Jinwen raised the question whether the consistency of ZF^M can be deducted from ZF^(M+m(M)) for some m(n)≥1.In this paper,we get a positive solution to Professor Zhang's problem.Moreover,we show that the consistency of ZF^M can be deducted from ZF^(M+3).
基金Project supports by the National Natural Science Foundation of China(Grant Nos.21074062 and 11174163)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of Chinathe Scientific Research Fund of Zhejiang Provincial Educational Department,China(Grant No.Y200907455)
文摘The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory. The power law scaling relationships between the boundary layer thickness and the surface charge density and the charge fraction of PE chains revealed in the study are in good agreement with the existing analytical result. The curvature effect on the degree of charge compensation of the total amount of charges on the adsorbed PE chains over the surface charges is examined, and a clear understanding of it based on the dependences of the degree of charge compensation on the surface charge density and the charge fraction of PE chains is established.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11421101 and 21274005)the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
文摘The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.
基金supported by the National Natural Science Foundation of China(10972121)the Ministry of Education (SRFDP 20090002110047)the 973 Program of MOST(2012CB934101)
文摘Self-assembled nanostructures of lipids and nanoparticles hold great promise for applications in such fields as nanomedicine. This paper uses the self-consistent field theory to investigate the self-assembly behavior of lipid molecules and nanoparticles with different shapes in an aqueous solution. It is found that the lipid molecules can form monolayered and bilayered nanostructures around the nanopartieles with different shapes (e.g., triangular, square, hexagonal and octangular). With decreasing the size of nanoparticles or increasing the number of polygon edges, the shape of lipid layers will approach an approximately spherical shape. These findings may help to predict and design novel drug delivery nanocarriers.