For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for th...In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance.展开更多
For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information...For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information fusion technology to extract and fuse the features of cutting vibration signal,cutting force signal and acoustic emission signal in time domain,frequency domain and time-frequency domain,and downscale the sample features by Pearson correlation coefficient to construct a sample data set;then we propose a tool life prediction model based on CNN-SVM optimized by genetic algorithm(GA),which uses CNN convolutional neural network as the feature learner and SVM support vector machine as the trainer for regression prediction.The results show that the improved model in this paper can effectively predict the tool life with better generalization ability,faster network fitting,and 99.85%prediction accuracy.And compared with the BP model,CNN model,SVM model and CNN-SVM model,the performance of the coefficient of determination R2 metric improved by 4.88%,2.96%,2.53%and 1.34%,respectively.展开更多
Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage de...The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.展开更多
With the wide applications of sensor network technology in traffic information acquisition systems,a new measure will be quite necessary to evaluate spatially related properties of traffic information credibility.The ...With the wide applications of sensor network technology in traffic information acquisition systems,a new measure will be quite necessary to evaluate spatially related properties of traffic information credibility.The heterogeneity of spatial distribution of information credibility from sensor networks is analyzed and a new measure,information credibility function(ICF),is proposed to describe this heterogeneity.Three possible functional forms of sensor ICF and their corresponding expressions are presented.Then,two feasible operations of spatial superposition of sensor ICFs are discussed.Finally,a numerical example is introduced to show the calibration method of sensor ICF and obtain the spatially related properties of expressway in Beijing.The results show that the sensor ICF of expressway in Beijing possesses a negative exponent property.The traffic information is more abundant at or near the locations of sensor,while with the distance away from the sensor increasing,the traffic information credibility will be declined by an exponential trend.The new measure provides theoretical bases for the optimal locations of traffic sensor networks and the mechanism research of spatial distribution of traffic information credibility.展开更多
Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional metho...Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.展开更多
In this paper, the lattice model is presented, incorporating not only site information about preceding cars but also relative currents in front. We derive the stability condition of the extended model by considering a...In this paper, the lattice model is presented, incorporating not only site information about preceding cars but also relative currents in front. We derive the stability condition of the extended model by considering a small perturbation around the homogeneous flow solution and find that the improvement in the stability of traffic flow is obtained by taking into account preceding mixture traffic information. Direct simulations also confirm that the traffic jam can be suppressed efficiently by considering the relative currents ahead, just like incorporating site information in front. Moreover, from the nonlinear analysis of the extended models, the preceding mixture traffic information dependence of the propagating kink solutions for traffic jams is obtained by deriving the modified KdV equation near the critical point using the reductive perturbation method.展开更多
Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed vi...Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed video with interframe motion vectors for speed, density and flow detection, has been proposed for ex-traction of traffic information under fixed camera setting and well-defined environment. The motion vectors arefirst separated from the compressed video streams, and then filtered to eliminate incorrect and noisy vectors u-sing the well-defined environmental knowledge. By applying the projective transform and using the filtered mo-tion vectors, speed can be calculated from motion vector statistics, density can be estimated using the motionvector occupancy, and flow can be detected using the combination of speed and density. The embodiment of aprototype system for sky camera traffic monitoring using the MPEG video has been implemented, and experi-mental results proved the effectiveness of the method proposed.展开更多
The slow traffic system is an important component of urban transportation,and the prerequisite and necessary condition for Beijing to continue promoting“green priority”are establishing a good urban slow traffic syst...The slow traffic system is an important component of urban transportation,and the prerequisite and necessary condition for Beijing to continue promoting“green priority”are establishing a good urban slow traffic system.Shijingshan District of Beijing City is taken as a research object.By analyzing and processing population distribution data,POI data,and shared bicycle data,the shortcomings and deficiencies of the current slow traffic system in Shijingshan District are explored,and corresponding solutions are proposed,in order to provide new ideas and methods for future urban planning from the perspective of data.展开更多
Due to the characteristics of variability and dispersion in traffic information, to get the reliable real-time traffic information has been a bottleneck in the development of intelligent transportation systems. Howeve...Due to the characteristics of variability and dispersion in traffic information, to get the reliable real-time traffic information has been a bottleneck in the development of intelligent transportation systems. However, with the development of wireless network technology and mobile Internet, the mobile phones are rapidly developed and more popular, so it is possible to get road traffic information by locating the mobile phones in vehicles. The system structure for the road traffic information collection is designed based on wireless network and mobile phones in vehicles, and the vehicle recognition and its information computation methods are given and discussed. Also the simulation is done for vehicle recognition and computation based on fuzzy cluster analysis method and the results are obtained and analyzed.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is pre...In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper.展开更多
The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides incre...The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides increased power interconnection functionality and meaning,helps condense forces,and accelerates the integration of global infrastructure.Correspondingly,it is envisaged that it will become the trend of industrial technological development in the future.In consideration of the current trend of integrated development,this study evaluates a possible plan of coordinated development of fiber-optic and power networks in the Pan-Arctic region.Firstly,the backbone network architecture of Global Energy Interconnection is introduced and the importance of the Arctic energy backbone network is confirmed.The energy consumption and developmental trend of global data centers are then analyzed.Subsequently,the global network traffic is predicted and analyzed by means of a polynomial regression model.Finally,in combination with the current construction of fiber-optic networks in the Pan-Arctic region,the advantages of the integration of the fiber-optic and power networks in this region are clarified in justification of the decision for the development of a Global Energy Interconnection scheme.展开更多
Effect of cars with intelligent transportation systems (ITSs) on traffic flow near an on-ramp is investigated by car-following simulations. By numerical simulations, the dependences of flux on the inflow rate are in...Effect of cars with intelligent transportation systems (ITSs) on traffic flow near an on-ramp is investigated by car-following simulations. By numerical simulations, the dependences of flux on the inflow rate are investigated for various proportions of cars with ITSs. The phase diagrams as well as the spatiotemporal diagrams are presented to show different traffic flow states on the main road and the on-ramp. The results show that the saturated flux on the main road increases and the free flow region is enlarged with the increase of the proportion of cars with ITS. Interestingly, the congested regions of the main road disappear completely when the proportion is larger than a critical value. Further investigation shows that the capacity of on-ramp system can be promoted by 13% by using the ITS information, and the saturated flux on the on-ramp can be kept at an appropriate value by adjusting the proportion of cars with ITS.展开更多
With the rapid growth of vehicle population and vehicle miles traveled, automobile emission has become a severe issue in the metropolitan cities of China. There are policies that concentrate on the management of emiss...With the rapid growth of vehicle population and vehicle miles traveled, automobile emission has become a severe issue in the metropolitan cities of China. There are policies that concentrate on the management of emission sources. However, improving the operation of the transportation system through apps on mobile devices, especially navigation apps, may have a unique role in promoting urban air quality. Real-time traveler information can not only help travelers avoid traffic congestion, hut also advise them to adjust their departure time, mode, or route, or even to cancel trips. Will such changes in personal travel patterns have a significant impact in decreasing emissions? If so, to what extent will they impact urban air quality? The aim of this study is to determine how urban traffic emission is affected by the use of navigation apps. With this work, we attempt to answer the question of whether the real-time traffic information provided by navigation apps can help to improve urban air quality. Some of these findings may provide references for the formulation of urban traffic and environmental policies.展开更多
The Internet of things(IoT)has become a key infrastructure providing up-to-date and fresh information for policy analysis and decision-making of upper-layer applications.However,there are limited sensing and communica...The Internet of things(IoT)has become a key infrastructure providing up-to-date and fresh information for policy analysis and decision-making of upper-layer applications.However,there are limited sensing and communication resources in IoT devices,which significantly affects the timeliness and freshness of the updated status.This work proposes two schemes,namely,the generation rate control and service rate reservation schemes,to improve the overall information freshness of multiple status update streams at the receiver.Specifically,using the recently proposed Age of Information(AoI)as the metric for evaluating information freshness,we characterized the overall information freshness,i.e.,the overall average AoI at the receiver for both schemes,by considering the urgency difference of status update and streams.Both schemes for status updates and streams,respectively,were formulated as two optimization problems.We proved that both problems are convex and the optimal generation and service rates for different streams are found by the standard convex optimization algorithm.Moreover,we proposed both approximate optimal generation and approximate optimal service rate for fast deployment in heavy and light load cases.Numerical results verify the theoretical findings and accuracy of the proposed approximate solutions,guiding the design and deployment of IoT.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金supported by the Science and Technology Project of State Grid Shandong Electric Power Company?“Research on the Data-Driven Method for Energy Internet”?(Project No.2018A-100)。
文摘In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance.
基金financed with the means of Basic Scientific Research Youth Program of Education Department of Liaoning Province,No.LJKQZ2021185Yingkou Enterprise and Doctor Innovation Program (QB-2021-05).
文摘For milling tool life prediction and health management,accurate extraction and dimensionality reduction of its tool wear features are the key to reduce prediction errors.In this paper,we adopt multi-source information fusion technology to extract and fuse the features of cutting vibration signal,cutting force signal and acoustic emission signal in time domain,frequency domain and time-frequency domain,and downscale the sample features by Pearson correlation coefficient to construct a sample data set;then we propose a tool life prediction model based on CNN-SVM optimized by genetic algorithm(GA),which uses CNN convolutional neural network as the feature learner and SVM support vector machine as the trainer for regression prediction.The results show that the improved model in this paper can effectively predict the tool life with better generalization ability,faster network fitting,and 99.85%prediction accuracy.And compared with the BP model,CNN model,SVM model and CNN-SVM model,the performance of the coefficient of determination R2 metric improved by 4.88%,2.96%,2.53%and 1.34%,respectively.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
文摘The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.
基金Project(61104164)supported by the National Natural Science Foundation of ChinaProject(2012AA112401)supported by the National High Technology Research and Development Program of ChinaProject(2012YJS059)supported by the Fundamental Research Funds for the Central Universities of China
文摘With the wide applications of sensor network technology in traffic information acquisition systems,a new measure will be quite necessary to evaluate spatially related properties of traffic information credibility.The heterogeneity of spatial distribution of information credibility from sensor networks is analyzed and a new measure,information credibility function(ICF),is proposed to describe this heterogeneity.Three possible functional forms of sensor ICF and their corresponding expressions are presented.Then,two feasible operations of spatial superposition of sensor ICFs are discussed.Finally,a numerical example is introduced to show the calibration method of sensor ICF and obtain the spatially related properties of expressway in Beijing.The results show that the sensor ICF of expressway in Beijing possesses a negative exponent property.The traffic information is more abundant at or near the locations of sensor,while with the distance away from the sensor increasing,the traffic information credibility will be declined by an exponential trend.The new measure provides theoretical bases for the optimal locations of traffic sensor networks and the mechanism research of spatial distribution of traffic information credibility.
基金Sponsored by the National Science and Technology Innovation Fund for Small and Medium Enterprises(Grant No.10C26211200144)Tianjin Science and Technology Key Supporting Projects(Grant No.10ZCGYGX18300)
文摘Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60904068,10902076,11072117,and 61004113)
文摘In this paper, the lattice model is presented, incorporating not only site information about preceding cars but also relative currents in front. We derive the stability condition of the extended model by considering a small perturbation around the homogeneous flow solution and find that the improvement in the stability of traffic flow is obtained by taking into account preceding mixture traffic information. Direct simulations also confirm that the traffic jam can be suppressed efficiently by considering the relative currents ahead, just like incorporating site information in front. Moreover, from the nonlinear analysis of the extended models, the preceding mixture traffic information dependence of the propagating kink solutions for traffic jams is obtained by deriving the modified KdV equation near the critical point using the reductive perturbation method.
文摘Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed video with interframe motion vectors for speed, density and flow detection, has been proposed for ex-traction of traffic information under fixed camera setting and well-defined environment. The motion vectors arefirst separated from the compressed video streams, and then filtered to eliminate incorrect and noisy vectors u-sing the well-defined environmental knowledge. By applying the projective transform and using the filtered mo-tion vectors, speed can be calculated from motion vector statistics, density can be estimated using the motionvector occupancy, and flow can be detected using the combination of speed and density. The embodiment of aprototype system for sky camera traffic monitoring using the MPEG video has been implemented, and experi-mental results proved the effectiveness of the method proposed.
基金Sponsored by Beijing Natural Science Foundation General Project(8212009)Construction of Philosophy and Social Sciences Base in Beijing-Research on Beijing Urban Renewal and Comprehensive Management of Old Community En-vironment2023 Education Reform Project of North China University of Technology(108051360023XN264-25).
文摘The slow traffic system is an important component of urban transportation,and the prerequisite and necessary condition for Beijing to continue promoting“green priority”are establishing a good urban slow traffic system.Shijingshan District of Beijing City is taken as a research object.By analyzing and processing population distribution data,POI data,and shared bicycle data,the shortcomings and deficiencies of the current slow traffic system in Shijingshan District are explored,and corresponding solutions are proposed,in order to provide new ideas and methods for future urban planning from the perspective of data.
文摘Due to the characteristics of variability and dispersion in traffic information, to get the reliable real-time traffic information has been a bottleneck in the development of intelligent transportation systems. However, with the development of wireless network technology and mobile Internet, the mobile phones are rapidly developed and more popular, so it is possible to get road traffic information by locating the mobile phones in vehicles. The system structure for the road traffic information collection is designed based on wireless network and mobile phones in vehicles, and the vehicle recognition and its information computation methods are given and discussed. Also the simulation is done for vehicle recognition and computation based on fuzzy cluster analysis method and the results are obtained and analyzed.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51138003)
文摘In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper.
基金supported by the Corporation Science and Technology Program of Global Energy Interconnection Group Ltd. (GEIGC-D-[2018]024)by the National Natural Science Foundation of China (61472042, 61772079)
文摘The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides increased power interconnection functionality and meaning,helps condense forces,and accelerates the integration of global infrastructure.Correspondingly,it is envisaged that it will become the trend of industrial technological development in the future.In consideration of the current trend of integrated development,this study evaluates a possible plan of coordinated development of fiber-optic and power networks in the Pan-Arctic region.Firstly,the backbone network architecture of Global Energy Interconnection is introduced and the importance of the Arctic energy backbone network is confirmed.The energy consumption and developmental trend of global data centers are then analyzed.Subsequently,the global network traffic is predicted and analyzed by means of a polynomial regression model.Finally,in combination with the current construction of fiber-optic networks in the Pan-Arctic region,the advantages of the integration of the fiber-optic and power networks in this region are clarified in justification of the decision for the development of a Global Energy Interconnection scheme.
基金Project partially supported by the National Basic Research Program of China(Grant No.2006CB705500)the National Natural Science Foundation of China(Grant Nos.70631001 and 70701004)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University(Grant No.141046522)
文摘Effect of cars with intelligent transportation systems (ITSs) on traffic flow near an on-ramp is investigated by car-following simulations. By numerical simulations, the dependences of flux on the inflow rate are investigated for various proportions of cars with ITSs. The phase diagrams as well as the spatiotemporal diagrams are presented to show different traffic flow states on the main road and the on-ramp. The results show that the saturated flux on the main road increases and the free flow region is enlarged with the increase of the proportion of cars with ITS. Interestingly, the congested regions of the main road disappear completely when the proportion is larger than a critical value. Further investigation shows that the capacity of on-ramp system can be promoted by 13% by using the ITS information, and the saturated flux on the on-ramp can be kept at an appropriate value by adjusting the proportion of cars with ITS.
文摘With the rapid growth of vehicle population and vehicle miles traveled, automobile emission has become a severe issue in the metropolitan cities of China. There are policies that concentrate on the management of emission sources. However, improving the operation of the transportation system through apps on mobile devices, especially navigation apps, may have a unique role in promoting urban air quality. Real-time traveler information can not only help travelers avoid traffic congestion, hut also advise them to adjust their departure time, mode, or route, or even to cancel trips. Will such changes in personal travel patterns have a significant impact in decreasing emissions? If so, to what extent will they impact urban air quality? The aim of this study is to determine how urban traffic emission is affected by the use of navigation apps. With this work, we attempt to answer the question of whether the real-time traffic information provided by navigation apps can help to improve urban air quality. Some of these findings may provide references for the formulation of urban traffic and environmental policies.
基金sponsored by the National Natural Science Foundation of China under Grant 61901066,Grant 61971077sponsored by Natural Science Foundation of Chongqing,China under Grant cstc2019jcyjmsxmX0575,Grant cstc2021jcyj-msxmX0458+2 种基金in part by the Entrepreneurship and Innovation Support Plan of Chongqing for Returned Overseas Scholars under Grant cx2021092supported by the open research fund of National Mobile Communications Research Laboratory,Southeast University(No.2021D13,No.2022D06)the Industrial Internet innovation and development project(No.TC200A00M).
文摘The Internet of things(IoT)has become a key infrastructure providing up-to-date and fresh information for policy analysis and decision-making of upper-layer applications.However,there are limited sensing and communication resources in IoT devices,which significantly affects the timeliness and freshness of the updated status.This work proposes two schemes,namely,the generation rate control and service rate reservation schemes,to improve the overall information freshness of multiple status update streams at the receiver.Specifically,using the recently proposed Age of Information(AoI)as the metric for evaluating information freshness,we characterized the overall information freshness,i.e.,the overall average AoI at the receiver for both schemes,by considering the urgency difference of status update and streams.Both schemes for status updates and streams,respectively,were formulated as two optimization problems.We proved that both problems are convex and the optimal generation and service rates for different streams are found by the standard convex optimization algorithm.Moreover,we proposed both approximate optimal generation and approximate optimal service rate for fast deployment in heavy and light load cases.Numerical results verify the theoretical findings and accuracy of the proposed approximate solutions,guiding the design and deployment of IoT.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.