Hiding secret data in digital images is one of the major researchfields in information security.Recently,reversible data hiding in encrypted images has attracted extensive attention due to the emergence of cloud servi...Hiding secret data in digital images is one of the major researchfields in information security.Recently,reversible data hiding in encrypted images has attracted extensive attention due to the emergence of cloud services.This paper proposes a novel reversible data hiding method in encrypted images based on an optimal multi-threshold block labeling technique(OMTBL-RDHEI).In our scheme,the content owner encrypts the cover image with block permutation,pixel permutation,and stream cipher,which preserve the in-block correlation of pixel values.After uploading to the cloud service,the data hider applies the prediction error rearrangement(PER),the optimal threshold selection(OTS),and the multi-threshold labeling(MTL)methods to obtain a compressed version of the encrypted image and embed secret data into the vacated room.The receiver can extract the secret,restore the cover image,or do both according to his/her granted authority.The proposed MTL labels blocks of the encrypted image with a list of threshold values which is optimized with OTS based on the features of the current image.Experimental results show that labeling image blocks with the optimized threshold list can efficiently enlarge the amount of vacated room and thus improve the embedding capacity of an encrypted cover image.Security level of the proposed scheme is analyzed and the embedding capacity is compared with state-of-the-art schemes.Both are concluded with satisfactory performance.展开更多
This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-thresho...This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm.展开更多
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe...In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.展开更多
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio...In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.展开更多
Automatic edge detection of an image is considered a type of crucial information that can be extracted by applying detectors with different techniques. It is a main tool in pattern recognition, image segmentation, and...Automatic edge detection of an image is considered a type of crucial information that can be extracted by applying detectors with different techniques. It is a main tool in pattern recognition, image segmentation, and scene analysis. This paper introduces an edge-detection algorithm, which generates multi-threshold values. It is based on non-Shannon measures such as Havrda & Charvat’s entropy, which is commonly used in gray level image analysis in many types of images such as satellite grayscale images. The proposed edge detection performance is compared to the previous classic methods, such as Roberts, Prewitt, and Sobel methods. Numerical results underline the robustness of the presented approach and different applications are shown.展开更多
三支决策将不确定样本划分至边界域进行延迟决策,但需基于损失函数确定阈值,以划分边界域,然而,损失函数通常需要先验知识,具有一定的主观性,因此对边界域划分能力不足。针对这种问题,构建一种多目标三支决策边界域求解方法,从而更好地...三支决策将不确定样本划分至边界域进行延迟决策,但需基于损失函数确定阈值,以划分边界域,然而,损失函数通常需要先验知识,具有一定的主观性,因此对边界域划分能力不足。针对这种问题,构建一种多目标三支决策边界域求解方法,从而更好地划分边界域,提升分类性能。采用贝叶斯规则获取样本的条件概率;设定3个目标,包括降低边界域的不确定性、缩小边界域的大小以及减小整个决策区域的错误分类率,通过融入熵权法的TOPSIS(technique for order preference by similarity to an ideal solution)方法求取最优阈值,该方法采用熵权法计算这3个目标所占的权重,得到最优阈值,获得边界域,进行延迟决策;结合不同分类器对边界域进行分类。通过UCI数据集进行对比实验,根据分类准确率和F1值,表明该方法学习到的阈值能合理地划分边界域,建立的模型能取得更好的分类性能。展开更多
基金the Ministry of Science and Technology of Taiwan,Grant Number MOST 110-2221-E-507-003.
文摘Hiding secret data in digital images is one of the major researchfields in information security.Recently,reversible data hiding in encrypted images has attracted extensive attention due to the emergence of cloud services.This paper proposes a novel reversible data hiding method in encrypted images based on an optimal multi-threshold block labeling technique(OMTBL-RDHEI).In our scheme,the content owner encrypts the cover image with block permutation,pixel permutation,and stream cipher,which preserve the in-block correlation of pixel values.After uploading to the cloud service,the data hider applies the prediction error rearrangement(PER),the optimal threshold selection(OTS),and the multi-threshold labeling(MTL)methods to obtain a compressed version of the encrypted image and embed secret data into the vacated room.The receiver can extract the secret,restore the cover image,or do both according to his/her granted authority.The proposed MTL labels blocks of the encrypted image with a list of threshold values which is optimized with OTS based on the features of the current image.Experimental results show that labeling image blocks with the optimized threshold list can efficiently enlarge the amount of vacated room and thus improve the embedding capacity of an encrypted cover image.Security level of the proposed scheme is analyzed and the embedding capacity is compared with state-of-the-art schemes.Both are concluded with satisfactory performance.
基金This work was supported by the National Natural Science Foundation of China(62076025).
文摘This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm.
基金Science and Technology Plan of Gansu Province(No.144NKCA040)
文摘In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.
基金supported by the Aeronautical Science Foundation of China(No.20151067003)。
文摘In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.
文摘Automatic edge detection of an image is considered a type of crucial information that can be extracted by applying detectors with different techniques. It is a main tool in pattern recognition, image segmentation, and scene analysis. This paper introduces an edge-detection algorithm, which generates multi-threshold values. It is based on non-Shannon measures such as Havrda & Charvat’s entropy, which is commonly used in gray level image analysis in many types of images such as satellite grayscale images. The proposed edge detection performance is compared to the previous classic methods, such as Roberts, Prewitt, and Sobel methods. Numerical results underline the robustness of the presented approach and different applications are shown.
文摘三支决策将不确定样本划分至边界域进行延迟决策,但需基于损失函数确定阈值,以划分边界域,然而,损失函数通常需要先验知识,具有一定的主观性,因此对边界域划分能力不足。针对这种问题,构建一种多目标三支决策边界域求解方法,从而更好地划分边界域,提升分类性能。采用贝叶斯规则获取样本的条件概率;设定3个目标,包括降低边界域的不确定性、缩小边界域的大小以及减小整个决策区域的错误分类率,通过融入熵权法的TOPSIS(technique for order preference by similarity to an ideal solution)方法求取最优阈值,该方法采用熵权法计算这3个目标所占的权重,得到最优阈值,获得边界域,进行延迟决策;结合不同分类器对边界域进行分类。通过UCI数据集进行对比实验,根据分类准确率和F1值,表明该方法学习到的阈值能合理地划分边界域,建立的模型能取得更好的分类性能。