Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature des...Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature descriptor and improved similarity measure are proposed for enhancing the matching performance.The proposed descriptor is built on a voting scheme of structure tensor that can effectively capture the geometric structural properties of images.It is not only illumination and contrast invariant but also robust against the degradation caused by significant noise.Further,the similarity measure is improved to adapt to the reversal of orientation caused by the intensity inversion between multi-modal images.The proposed dense feature descriptor and improved similarity measure enable the development of a robust and practical templatematching algorithm for multi-modal images.We verify the proposed algorithm with a broad range of multi-modal images including optical,infrared,Synthetic Aperture Radar(SAR),digital surface model,and map data.The experimental results confirm its superiority to the state-of-the-art methods.展开更多
In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to descr...In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance.展开更多
Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate...Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate promising results but always need ground object filtered DEM generation before otho-rectification;this can consume much time and produce building facade contained results.To address this problem,a pixel-by-pixel digital differential rectification-based automatic DOM generation method is proposed in this paper.Firstly,3D point clouds with texture are generated by dense image matching based on an optical flow field for a stereo pair of images,respectively.Then,the grayscale of the digital differential rectification image is extracted directly from the point clouds element by element according to the nearest neighbor method for matched points.Subsequently,the elevation is repaired grid-by-grid using the multi-layer Locally Refined B-spline(LR-B)interpolation method with triangular mesh constraint for the point clouds void area,and the grayscale is obtained by the indirect scheme of digital differential rectification to generate the pixel-by-pixel digital differentially rectified image of a single image slice.Finally,a seamline network is automatically searched using a disparity map optimization algorithm,and DOM is smartly mosaicked.The qualitative and quantitative experimental results on three datasets were produced and evaluated,which confirmed the feasibility of the proposed method,and the DOM accuracy can reach 1 Ground Sample Distance(GSD)level.The comparison experiment with the state-of-the-art commercial softwares showed that the proposed method generated DOM has a better visual effect on building boundaries and roof completeness with comparable accuracy and computational efficiency.展开更多
基金supported by the National Natural Science Foundations of China(No.61802423)the Natural Science Foundation of Hunan Province,China(No.2019JJ50739)。
文摘Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature descriptor and improved similarity measure are proposed for enhancing the matching performance.The proposed descriptor is built on a voting scheme of structure tensor that can effectively capture the geometric structural properties of images.It is not only illumination and contrast invariant but also robust against the degradation caused by significant noise.Further,the similarity measure is improved to adapt to the reversal of orientation caused by the intensity inversion between multi-modal images.The proposed dense feature descriptor and improved similarity measure enable the development of a robust and practical templatematching algorithm for multi-modal images.We verify the proposed algorithm with a broad range of multi-modal images including optical,infrared,Synthetic Aperture Radar(SAR),digital surface model,and map data.The experimental results confirm its superiority to the state-of-the-art methods.
基金supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012,author J.Q,http://kjt.hunan.gov.cn/+7 种基金in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry&Technology under Grant 2019JG013,author X.X,http://jwc.csuft.edu.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/.
文摘In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance.
基金supported by the National Natural Science Foundation of China[Grant No.41771479]the National High-Resolution Earth Observation System(the Civil Part)[Grant No.50-H31D01-0508-13/15]the Japan Society for the Promotion of Science[Grant No.22H03573].
文摘Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate promising results but always need ground object filtered DEM generation before otho-rectification;this can consume much time and produce building facade contained results.To address this problem,a pixel-by-pixel digital differential rectification-based automatic DOM generation method is proposed in this paper.Firstly,3D point clouds with texture are generated by dense image matching based on an optical flow field for a stereo pair of images,respectively.Then,the grayscale of the digital differential rectification image is extracted directly from the point clouds element by element according to the nearest neighbor method for matched points.Subsequently,the elevation is repaired grid-by-grid using the multi-layer Locally Refined B-spline(LR-B)interpolation method with triangular mesh constraint for the point clouds void area,and the grayscale is obtained by the indirect scheme of digital differential rectification to generate the pixel-by-pixel digital differentially rectified image of a single image slice.Finally,a seamline network is automatically searched using a disparity map optimization algorithm,and DOM is smartly mosaicked.The qualitative and quantitative experimental results on three datasets were produced and evaluated,which confirmed the feasibility of the proposed method,and the DOM accuracy can reach 1 Ground Sample Distance(GSD)level.The comparison experiment with the state-of-the-art commercial softwares showed that the proposed method generated DOM has a better visual effect on building boundaries and roof completeness with comparable accuracy and computational efficiency.