With the emergence of the artificial intelligence era,all kinds of robots are traditionally used in agricultural production.However,studies concerning the robot task assignment problem in the agriculture field,which i...With the emergence of the artificial intelligence era,all kinds of robots are traditionally used in agricultural production.However,studies concerning the robot task assignment problem in the agriculture field,which is closely related to the cost and efficiency of a smart farm,are limited.Therefore,a Multi-Weeding Robot Task Assignment(MWRTA)problem is addressed in this paper to minimize the maximum completion time and residual herbicide.A mathematical model is set up,and a Multi-Objective Teaching-Learning-Based Optimization(MOTLBO)algorithm is presented to solve the problem.In the MOTLBO algorithm,a heuristicbased initialization comprising an improved Nawaz Enscore,and Ham(NEH)heuristic and maximum loadbased heuristic is used to generate an initial population with a high level of quality and diversity.An effective teaching-learning-based optimization process is designed with a dynamic grouping mechanism and a redefined individual updating rule.A multi-neighborhood-based local search strategy is provided to balance the exploitation and exploration of the algorithm.Finally,a comprehensive experiment is conducted to compare the proposed algorithm with several state-of-the-art algorithms in the literature.Experimental results demonstrate the significant superiority of the proposed algorithm for solving the problem under consideration.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62273221 and 61973203)the Program of Shanghai Academic/Technology Research Leader(No.21XD1401000)the Shanghai Key Laboratory of Power Station Automation Technology.
文摘With the emergence of the artificial intelligence era,all kinds of robots are traditionally used in agricultural production.However,studies concerning the robot task assignment problem in the agriculture field,which is closely related to the cost and efficiency of a smart farm,are limited.Therefore,a Multi-Weeding Robot Task Assignment(MWRTA)problem is addressed in this paper to minimize the maximum completion time and residual herbicide.A mathematical model is set up,and a Multi-Objective Teaching-Learning-Based Optimization(MOTLBO)algorithm is presented to solve the problem.In the MOTLBO algorithm,a heuristicbased initialization comprising an improved Nawaz Enscore,and Ham(NEH)heuristic and maximum loadbased heuristic is used to generate an initial population with a high level of quality and diversity.An effective teaching-learning-based optimization process is designed with a dynamic grouping mechanism and a redefined individual updating rule.A multi-neighborhood-based local search strategy is provided to balance the exploitation and exploration of the algorithm.Finally,a comprehensive experiment is conducted to compare the proposed algorithm with several state-of-the-art algorithms in the literature.Experimental results demonstrate the significant superiority of the proposed algorithm for solving the problem under consideration.