期刊文献+
共找到72,611篇文章
< 1 2 250 >
每页显示 20 50 100
A Q-based integrating interaction framework system for multi-agent coordination
1
作者 王振杰 盛焕烨 肖正光 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第4期424-433,共10页
Interaction is one of the crucial features of multl-agent systems, in which there are two kinds of interaction: agent-to-agent and human-to-agent. In order to unify the two kinds of interaction while designing multi-... Interaction is one of the crucial features of multl-agent systems, in which there are two kinds of interaction: agent-to-agent and human-to-agent. In order to unify the two kinds of interaction while designing multi-agent systems, this paper introduces Q language-a scenario description language for designing interaction among agents and humans. Based on Q, we propose an integrating interaction framework system for multi-agent coordination, in which Q scenarios are used to uniformly describe both kinds of interactions. Being in accordance to the characteristics of Q language, the Q-based framework makes the interaction process open and easily understood by the users. Additionally, it makes specific applications of multi-agent systems easy to be established by application designers. By applying agent negotiation in agent-mediated e-commerce and agent cooperation in interoperable information query on the Semantic Web, we illustrate how the presented framework for multi-agent coordination is implemented in concrete applications. At the same time, these two different applications also demonstrate usability of the presented framework and verify validity of Q language. 展开更多
关键词 interaction description language multi-agent coordination e-commence semantic web
下载PDF
Multi-agent coordination strategy estimation method based on control domain
2
作者 曙光 洪炳熔 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第3期249-252,共4页
For estimation group competition and multiagent coordination strategy, this paper introduces a notion based on multiagent group. According to the control domain, it analyzes the multiagent strategy during competition ... For estimation group competition and multiagent coordination strategy, this paper introduces a notion based on multiagent group. According to the control domain, it analyzes the multiagent strategy during competition in the macroscopic. It has been adopted in robot soccer and result enunciates that our method does not depend on competition result. It can objectively quantitatively estimate coordination strategy. 展开更多
关键词 MULTIAGENT coordination control domain color histogram
下载PDF
Multi-agent coordination in directed moving neighbourhood random networks
3
作者 尚轶伦 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期15-22,共8页
This paper considers the consensus problem of dynamical multiple agents that communicate via a directed moving neighbourhood random network. Each agent performs random walk on a weighted directed network. Agents inter... This paper considers the consensus problem of dynamical multiple agents that communicate via a directed moving neighbourhood random network. Each agent performs random walk on a weighted directed network. Agents interact with each other through random unidirectional information flow when they coincide in the underlying network at a given instant. For such a framework, we present sufficient conditions for almost sure asymptotic consensus. Numerical examples are taken to show the effectiveness of the obtained results. 展开更多
关键词 multi-agent system consensus problem stochastic stability
下载PDF
Enhancing Multi-agent Coordination via Dual-channel Consensus
4
作者 Qingyang Zhang Kaishen Wang +3 位作者 Jingqing Ruan Yiming Yang Dengpeng Xing Bo Xu 《Machine Intelligence Research》 EI CSCD 2024年第2期349-368,共20页
Successful coordination in multi-agent systems requires agents to achieve consensus.Previous works propose methods through information sharing,such as explicit information sharing via communication protocols or exchan... Successful coordination in multi-agent systems requires agents to achieve consensus.Previous works propose methods through information sharing,such as explicit information sharing via communication protocols or exchanging information implicitly via behavior prediction.However,these methods may fail in the absence of communication channels or due to biased modeling.In this work,we propose to develop dual-channel consensus(DuCC)via contrastive representation learning for fully cooperative multi-agent systems,which does not need explicit communication and avoids biased modeling.DuCC comprises two types of consensus:temporally extended consensus within each agent(inner-agent consensus)and mutual consensus across agents(inter-agent consensus).To achieve DuCC,we design two objectives to learn representations of slow environmental features for inner-agent consensus and to realize cognitive consistency as inter-agent consensus.Our DuCC is highly general and can be flexibly combined with various MARL algorithms.The extensive experiments on StarCraft multi-agent challenge and Google research football demonstrate that our method efficiently reaches consensus and performs superiorly to state-of-the-art MARL algorithms. 展开更多
关键词 multi-agent reinforcement learning contrastive representation learning CONSENSUS multi-agent cooperation cognitive consistency
原文传递
A coordinated operation method of wind-PV-hydrogenstorage multi-agent energy system
5
作者 Tengfei Ma Wei Pei +3 位作者 Yanhong Yang Hao Xiao Chenghong Tang Weiqi Hua 《Global Energy Interconnection》 EI CSCD 2024年第4期446-461,共16页
Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was pr... Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model. 展开更多
关键词 Wind-PV-hydrogen-storage multi-agent energy system Renewable power to hydrogen coordinated operation Peer-to-peer power trading
下载PDF
Group Hybrid Coordination Control of Multi-Agent Systems With Time-Delays and Additive Noises
6
作者 Chuanjian Li Xiaofeng Zong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期737-748,共12页
A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two s... A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples. 展开更多
关键词 Additive noises consensus control containment control group hybrid coordination control multi-agent systems(MASs) TIME-DELAYS
下载PDF
基于Multi-Agent的无人机集群体系自主作战系统设计
7
作者 张堃 华帅 +1 位作者 袁斌林 杜睿怡 《系统工程与电子技术》 EI CSCD 北大核心 2024年第4期1273-1286,共14页
针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;... 针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;开展无人集群系统仿真推演验证。仿真结果表明,所提设计方案不仅能够有效开展并完成自主作战网络生成-集群演化-效能评估的全过程动态演示验证,而且能够通过重复随机试验进一步评估无人集群的协同作战效能,最后总结了集群协同作战的策略和经验。 展开更多
关键词 multi-agent 无人集群 体系设计 协同作战
下载PDF
基于Multi-Agent的水电站变压器故障诊断系统
8
作者 乔丹 马鹏 王琦 《自动化技术与应用》 2024年第7期58-61,65,共5页
为了精准、快速完成水电站变压器的故障诊断,设计基于Multi-Agent的水电站变压器故障诊断系统。变压器状态监控agent将检测到的变压器故障信息发送给系统管理agent,系统管理agent通过通信agent将变压器故障信息发送给变压器故障诊断age... 为了精准、快速完成水电站变压器的故障诊断,设计基于Multi-Agent的水电站变压器故障诊断系统。变压器状态监控agent将检测到的变压器故障信息发送给系统管理agent,系统管理agent通过通信agent将变压器故障信息发送给变压器故障诊断agent,变压器故障诊断agent利用小波变换方法提取变压器故障特征,并将其作为IFOA-SVM模型输入,完成变压器故障分类后,获取变压器故障诊断结果,该结果通过通信agent显示给用户。实验表明,该系统可有效诊断变压器故障诊断,诊断成功率受系统故障信息丢失率的影响较小,诊断耗时、耗能小,并具有较高故障诊断成功率。 展开更多
关键词 multi-agent 水电站 变压器 故障诊断 小波变换
下载PDF
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach 被引量:1
9
作者 Jiawen Kang Junlong Chen +6 位作者 Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期430-445,共16页
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. 展开更多
关键词 AVATAR blockchain metaverses multi-agent deep reinforcement learning transformer UAVS
下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer 被引量:1
10
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
A mixed-coordination electron trapping-enabled high-precision touch-sensitive screen for wearable devices 被引量:1
11
作者 Xi Zhang Junchi Ma +5 位作者 Hualin Deng Jinming Zhong Kaichen Xu Qiang Wu Bo Wen Dongfeng Diao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期413-427,共15页
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev... Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices. 展开更多
关键词 Flexible touch-sensitive screen Graphene-metal nanofilms Mixed coordination Wearable device
下载PDF
Optimizing high-coordination shell of Co-based single-atom catalysts for efficient ORR and zinc-air batteries 被引量:1
12
作者 Yugang Qi Qing Liang +9 位作者 Kexin Song Xinyan Zhou Meiqi Liu Wenwen Li Fuxi Liu Zhou Jiang Xu Zou Zhongjun Chen Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期306-314,I0007,共10页
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and... Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion. 展开更多
关键词 ELECTROCATALYTIC Oxygen reduction reaction Single atom catalyst Shell coordination optimization
下载PDF
Discovering Latent Variables for the Tasks With Confounders in Multi-Agent Reinforcement Learning
13
作者 Kun Jiang Wenzhang Liu +2 位作者 Yuanda Wang Lu Dong Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1591-1604,共14页
Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that ... Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms. 展开更多
关键词 Latent variable model maximum entropy multi-agent reinforcement learning(MARL) multi-agent system
下载PDF
Development of Multi-Agent-Based Indoor 3D Reconstruction
14
作者 Hoi Chuen Cheng Frederick Ziyang Hong +2 位作者 Babar Hussain Yiru Wang Chik Patrick Yue 《Computers, Materials & Continua》 SCIE EI 2024年第10期161-181,共21页
Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies.This work contributes to a framework addressing localization,coordination,and vision processing for multi-agent ... Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies.This work contributes to a framework addressing localization,coordination,and vision processing for multi-agent reconstruction.A system architecture fusing visible light positioning,multi-agent path finding via reinforcement learning,and 360°camera techniques for 3D reconstruction is proposed.Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure.Meanwhile,a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem,with communications among agents optimized.Our 3D reconstruction pipeline utilizes equirectangular projection from 360°cameras to facilitate depth-independent reconstruction from posed monocular images using neural networks.Experimental validation demonstrates centimeter-level indoor navigation and 3D scene reconstruction capabilities of our framework.The challenges and limitations stemming from the above enabling technologies are discussed at the end of each corresponding section.In summary,this research advances fundamental techniques for multi-robot indoor 3D modeling,contributing to automated,data-driven applications through coordinated robot navigation,perception,and modeling. 展开更多
关键词 multi-agent system multi-robot human collaboration visible light communication visible light positioning 3D reconstruction reinforcement learning multi-agent path finding
下载PDF
A survey on multi-agent reinforcement learning and its application
15
作者 Zepeng Ning Lihua Xie 《Journal of Automation and Intelligence》 2024年第2期73-91,共19页
Multi-agent reinforcement learning(MARL)has been a rapidly evolving field.This paper presents a comprehensive survey of MARL and its applications.We trace the historical evolution of MARL,highlight its progress,and di... Multi-agent reinforcement learning(MARL)has been a rapidly evolving field.This paper presents a comprehensive survey of MARL and its applications.We trace the historical evolution of MARL,highlight its progress,and discuss related survey works.Then,we review the existing works addressing inherent challenges and those focusing on diverse applications.Some representative stochastic games,MARL means,spatial forms of MARL,and task classification are revisited.We then conduct an in-depth exploration of a variety of challenges encountered in MARL applications.We also address critical operational aspects,such as hyperparameter tuning and computational complexity,which are pivotal in practical implementations of MARL.Afterward,we make a thorough overview of the applications of MARL to intelligent machines and devices,chemical engineering,biotechnology,healthcare,and societal issues,which highlights the extensive potential and relevance of MARL within both current and future technological contexts.Our survey also encompasses a detailed examination of benchmark environments used in MARL research,which are instrumental in evaluating MARL algorithms and demonstrate the adaptability of MARL to diverse application scenarios.In the end,we give our prospect for MARL and discuss their related techniques and potential future applications. 展开更多
关键词 Benchmark environments multi-agent reinforcement learning multi-agent systems Stochastic games
下载PDF
CoopAI-Route: DRL Empowered Multi-Agent Cooperative System for Efficient QoS-Aware Routing for Network Slicing in Multi-Domain SDN
16
作者 Meignanamoorthi Dhandapani V.Vetriselvi R.Aishwarya 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2449-2486,共38页
The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this... The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods. 展开更多
关键词 6G MULTI-DOMAIN multi-agent ROUTING DRL SDN
下载PDF
Bipartite consensus problems of Lurie multi-agent systems over signed graphs: A contraction approach
17
作者 张晓娇 吴祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期137-145,共9页
This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theor... This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results. 展开更多
关键词 contraction theory virtual system bipartite consensus Lurie multi-agent systems
下载PDF
Hyperbolic Tangent Function-Based Protocols for Global/Semi-Global Finite-Time Consensus of Multi-Agent Systems
18
作者 Zongyu Zuo Jingchuan Tang +1 位作者 Ruiqi Ke Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1381-1397,共17页
This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global ... This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols. 展开更多
关键词 Consensus protocol finite-time consensus hyper-bolic tangent function multi-agent systems.
下载PDF
Designing Proportional-Integral Consensus Protocols for Second-Order Multi-Agent Systems Using Delayed and Memorized State Information
19
作者 Honghai Wang Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期878-892,共15页
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens... This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems. 展开更多
关键词 Consensus protocol Hurwitz stability multi-agent systems quasi-polynomials time delay
下载PDF
Research on Maneuver Decision-Making of Multi-Agent Adversarial Game in a Random Interference Environment
20
作者 Shiguang Hu Le Ru +4 位作者 Bo Lu Zhenhua Wang Xiaolin Zhao Wenfei Wang Hailong Xi 《Computers, Materials & Continua》 SCIE EI 2024年第10期1879-1903,共25页
The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-ma... The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment.It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players,as well as the impact of participants’manipulative behaviors on the state changes of the players.A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario.Subsequently,the strategy selection interaction relationship,strategy evolution stability,and dynamic decision-making process of the game players are investigated and verified by simulation experiments.The results show that maneuver-related parameters and random environmental interference factors have different effects on the selection and evolutionary speed of the agent’s strategies.Especially in a highly uncertain environment,even small information asymmetry or miscalculation may have a significant impact on decision-making.This also confirms the feasibility and effectiveness of the method proposed in the paper,which can better explain the behavioral decision-making process of the agent in the interaction process.This study provides feasibility analysis ideas and theoretical references for improving multi-agent interactive decision-making and the interpretability of the game system model. 展开更多
关键词 Behavior decision-making stochastic evolutionary game nonlinear mathematical modeling multi-agent MANEUVER
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部