This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind di...This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.展开更多
Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic a...Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.展开更多
An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,a...An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-...This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.展开更多
This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut...Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.展开更多
Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement ...Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
The precision of multi-axis machining is deeply influenced by the tracking error of multi-axis control system. Since the multi-axis machine tools have nonlinear and time-varying behaviors, it is difficult to establish...The precision of multi-axis machining is deeply influenced by the tracking error of multi-axis control system. Since the multi-axis machine tools have nonlinear and time-varying behaviors, it is difficult to establish an accurate dynamic model for multi-axis control system design. In this paper, a novel adaptive fuzzy sliding model controller with dynamic compensation is proposed to reduce tracking error and to improve precision of multi-axis machining. The major ad-vantage of this approach is to achieve a high following speed without overshooting while maintaining a continuous CNC machine tool process. The adaptive fuzzy tuning rules are derived from a Lyapunov function to guarantee stability of the control system. The experimental results on GJ-110 show that the proposed control scheme effectively minimizes tracking errors of the CNC system with control performance surpassing that of a traditional PID controller.展开更多
This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking s...This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of t...In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of the pressure controller valve cover in different medium environments is unclear,interference between the valve cover and inner pipe may occur and negatively affect the IPP-Coring success rate.To address this issue,we conducted a series of indoor experiments employing a high-speed camera to gain greater insights into the valve cover rotation behavior in different medium environments,e.g.,air,water,and simulated drilling fluids.The results indicated that the variation in the valve cover rotation angle in the air and fluid environments can be described by a one-phase exponential decay function with a constant time parameter and by biphasic dose response function,respectively.The rotation behavior in the fluid environments exhibited distinct elastic and gravitational acceleration zones.In the fluid environments,the density clearly impacted the valve cover closing time and rotation behavior,whereas the effect of viscosity was very slight.This can be attributed to the negligible influence of the fluid viscosity on the drag coefficient found in this study;meanwhile,the density can increase the buoyancy and the time period during which the valve cover experienced a high drag coefficient.Considering these results,control schemes for the valve cover rotation behavior during IPP-Coring were proposed for different layers and geological conditions in which the different drilling fluids should be used,e.g.,the use of a high-density valve cover in high-pore pressure layers.展开更多
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer...When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the pre...PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller.The Direct Multi Search(DMS)algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model.A Metaheuristics Algorithm such as,SA(Simulated Annealing),MBBO(Modified Biogeography Based Opti-mization),BBO(Biogeography Based Optimization),PBIL(Population Based Incremental Learning),ES(Evolution Strategy),StudGA(Stud Genetic Algo-rithms),PSO(Particle Swarm Optimization),StudGA(Stud Genetic Algorithms),ES(Evolution Strategy),PSO(Particle Swarm Optimization)and ACO(Ant Col-ony Optimization)are used to tune the PID controller and Smith predictor design.The effectiveness of the suggested algorithms DMS-SA,DMS-BBO,DMS-MBBO,DMS-PBIL,DMS-StudGA,DMS-ES,DMS-ACO,and DMS-PSO for a class of dead-time structures employing PID controller and Smith predictor design controllers is illustrated using unit step set point response.When compared to other optimizations,the suggested hybrid metaheuristics approach improves the time response analysis when extended to the problem of smith predictor and PID controller designed tuning.展开更多
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is...A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.52072309 and 62303379)Beijing Institute of Spacecraft System Engineering Research Project (Grant NO.JSZL2020203B004)+1 种基金Natural Science Foundation of Shaanxi Province,Chinese (Grant NOs.2023-JC-QN-0003 and 2023-JC-QN-0665)Industry-University-Research Innovation Fund of Ministry of Education for Chinese Universities (Grant NO.2022IT189)。
文摘This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.
基金supported by the fund of Henan Key Laboratory of Superhard Abrasives and Grinding Equipment,Henan University of Technology(Grant No.JDKFJJ2023005)the Key Science and Technology Program of Henan Province(Grant Nos.242102221001 and 232102220085)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014).
文摘Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.
基金supported by Foundation of key Laboratory of AI and Information Processing of Education Department of Guangxi(No.2022GXZDSY002)(Hechi University),Foundation of Guangxi Key Laboratory of Automobile Components and Vehicle Technology(Nos.2022GKLACVTKF04,2023GKLACVTZZ06)。
文摘An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
基金supported by Prince Sultan University,Riyadh,Saudi Arabia,under research grant SEED-2022-CE-95。
文摘This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
基金supported by the National Natural Science Foundation of China(11972077,11672035)。
文摘Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.
基金supported by the Fundamental Research Funds for the Central Universities(DUT22RT(3)090)the National Natural Science Foundation of China(61890920,61890921,62122016,08120003)Liaoning Science and Technology Program(2023JH2/101700361).
文摘Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
文摘The precision of multi-axis machining is deeply influenced by the tracking error of multi-axis control system. Since the multi-axis machine tools have nonlinear and time-varying behaviors, it is difficult to establish an accurate dynamic model for multi-axis control system design. In this paper, a novel adaptive fuzzy sliding model controller with dynamic compensation is proposed to reduce tracking error and to improve precision of multi-axis machining. The major ad-vantage of this approach is to achieve a high following speed without overshooting while maintaining a continuous CNC machine tool process. The adaptive fuzzy tuning rules are derived from a Lyapunov function to guarantee stability of the control system. The experimental results on GJ-110 show that the proposed control scheme effectively minimizes tracking errors of the CNC system with control performance surpassing that of a traditional PID controller.
基金supported by the National Natural Science Foundation of China(62173029,62273033,U20A20225)the Fundamental Research Funds for the Central Universities,China(FRF-BD-19-002A)。
文摘This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(No.51827901&No.52274133)the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)the Shenzhen National Science Fund for Distinguished Young Scholars(RCJC20210706091948015).
文摘In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of the pressure controller valve cover in different medium environments is unclear,interference between the valve cover and inner pipe may occur and negatively affect the IPP-Coring success rate.To address this issue,we conducted a series of indoor experiments employing a high-speed camera to gain greater insights into the valve cover rotation behavior in different medium environments,e.g.,air,water,and simulated drilling fluids.The results indicated that the variation in the valve cover rotation angle in the air and fluid environments can be described by a one-phase exponential decay function with a constant time parameter and by biphasic dose response function,respectively.The rotation behavior in the fluid environments exhibited distinct elastic and gravitational acceleration zones.In the fluid environments,the density clearly impacted the valve cover closing time and rotation behavior,whereas the effect of viscosity was very slight.This can be attributed to the negligible influence of the fluid viscosity on the drag coefficient found in this study;meanwhile,the density can increase the buoyancy and the time period during which the valve cover experienced a high drag coefficient.Considering these results,control schemes for the valve cover rotation behavior during IPP-Coring were proposed for different layers and geological conditions in which the different drilling fluids should be used,e.g.,the use of a high-density valve cover in high-pore pressure layers.
基金supported partially by the National Natural Science Foundation of China under Grant 61503348the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010the 111 project under Grant B17040
文摘When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
文摘PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller.The Direct Multi Search(DMS)algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model.A Metaheuristics Algorithm such as,SA(Simulated Annealing),MBBO(Modified Biogeography Based Opti-mization),BBO(Biogeography Based Optimization),PBIL(Population Based Incremental Learning),ES(Evolution Strategy),StudGA(Stud Genetic Algo-rithms),PSO(Particle Swarm Optimization),StudGA(Stud Genetic Algorithms),ES(Evolution Strategy),PSO(Particle Swarm Optimization)and ACO(Ant Col-ony Optimization)are used to tune the PID controller and Smith predictor design.The effectiveness of the suggested algorithms DMS-SA,DMS-BBO,DMS-MBBO,DMS-PBIL,DMS-StudGA,DMS-ES,DMS-ACO,and DMS-PSO for a class of dead-time structures employing PID controller and Smith predictor design controllers is illustrated using unit step set point response.When compared to other optimizations,the suggested hybrid metaheuristics approach improves the time response analysis when extended to the problem of smith predictor and PID controller designed tuning.
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
基金supported partially by National Natural Science Foundation of China(Project Nos.61903289 and 62073102)。
文摘A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.