We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be ...We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be locally peaked at the magnetic equator.Perpendicular fluxes of ions(<100 eV)increase simultaneously with the appearances of EMIC waves,indicating a heating of these ions by EMIC waves.In addition,the measured ion distributions also support the equatorial peak formation,which accords with the result of the frequency analyses.The formation of local mass density peaks at the equator should be due to enhancements of equatorial ion concentrations,which are triggered by EMIC waves’perpendicular heating on low energy ions.展开更多
The gyroresonant interaction between electromagnetic ion cyclotron (EMIC) waves and energetic particles was studied in a multi-ion (H^+, He^+, and O^+) plasma. The minimum resonant energy Emin, resonant wave fr...The gyroresonant interaction between electromagnetic ion cyclotron (EMIC) waves and energetic particles was studied in a multi-ion (H^+, He^+, and O^+) plasma. The minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Daa were calculated at the center location of the symmetrical ring current: r ≈3.5RE with RE the Earth's radius. Emin is found to decrease rapidly from 10 MeV to a few keV with the increase in ca in three bands: H^+-band, He^+-band and O^+-band. Moreover, EMIC waves have substantial potential to scatter energetic (~100 keV) ions (mainly H^+ and He^+) into the loss cone and yield precipitation loss, suggesting that wave-particle interactions contribute to ring current decay.展开更多
作为地球磁层中一种分布广泛的电磁波,电磁离子回旋波(Electromagnetic ion cyclotron waves,简称EMIC波)是地球辐射带相对论电子的重要损失机制.EMIC波通常呈现H+、He+和O+三种不同频段,不同频段对相对论电子的散射效应和损失时间尺度...作为地球磁层中一种分布广泛的电磁波,电磁离子回旋波(Electromagnetic ion cyclotron waves,简称EMIC波)是地球辐射带相对论电子的重要损失机制.EMIC波通常呈现H+、He+和O+三种不同频段,不同频段对相对论电子的散射效应和损失时间尺度大不相同.准线性理论是定量分析不同频段EMIC波对地球辐射带相对论电子散射效应的重要工具,我们利用基于准线性理论开发的Full Diffusion Code(FDC),分别计算了H^(+)、He^(+)、O^(+)三种频段EMIC波在不同空间范围、背景等离子体条件以及不同传播角模型下对辐射带相对论电子的弹跳平均投掷角散射系数,建立了L=1.5~7,背景等离子体参数α*(=f_(pe)/f_(ce))=6~30范围内的多频段EMIC波电子散射系数矩阵库.进而,我们计算了辐射带相对论电子在不同频段EMIC波散射作用下的损失时间尺度,获得了在不同磁层条件下EMIC波损失沉降相对论电子的定量信息.这些结果对于提升地球辐射带动力学过程建模水平、开展辐射带空间天气预报具有重要价值.展开更多
电磁离子回旋波(Electromagnetic ion cyclotron waves,简称EMIC波)在地球辐射带电子动力学过程中扮演着非常重要的角色.通过波粒相互作用,EMIC波能有效地散射相对论电子,造成辐射带相对论电子快速沉降损失从而影响相对论电子通量演化....电磁离子回旋波(Electromagnetic ion cyclotron waves,简称EMIC波)在地球辐射带电子动力学过程中扮演着非常重要的角色.通过波粒相互作用,EMIC波能有效地散射相对论电子,造成辐射带相对论电子快速沉降损失从而影响相对论电子通量演化.因此在地球辐射带动力学建模中,快速准确地获取EMIC波对相对论电子的散射效应信息非常必要.利用基于准线性理论的Full Diffusion Code(FDC),本文主要研究了辐射带H^(+)频段EMIC波对相对论电子的散射效应,并定量计算了EMIC波对相对论电子的弹跳平均投掷角扩散系数.为了方便快速地进行辐射带多维度建模,我们建立了L=1.5~7,α^(*)=3~30范围内的扩散系数矩阵库.文中展示了L分别为3、4和5时α^(*)为3~30时H^(+)频段EMIC波三种不同传播角模型的弹跳平均投掷角扩散系数,其随不同输入参数的变化特征与前人结果基本一致.基于所建立的弹跳平均投掷角扩散系数矩阵库,我们使用线性插值方法计算得到了L为3.25、4.35、5.55时在等离子体层顶内外的弹跳平均投掷角扩散系数.通过计算比较FDC和线性插值两种方法得到的扩散系数的相对误差,我们进一步验证了线性插值方法对于快速获取扩散系数的可行性和准确性.我们的结果表明,扩散系数的多维矩阵构建和线性插值获取能有效提高辐射带动力学建模的效率,对地球辐射带动理学快速建模和空间天气预报有着重要意义.展开更多
We report a representative concurrent event of four wave modes at L≈5.0,including electrostatic electron cyclotron harmonic(ECH)waves,exohiss,magnetosonic(MS)waves,and electromagnetic ion cyclotron(EMIC)waves,based o...We report a representative concurrent event of four wave modes at L≈5.0,including electrostatic electron cyclotron harmonic(ECH)waves,exohiss,magnetosonic(MS)waves,and electromagnetic ion cyclotron(EMIC)waves,based on the observations from Van Allen Probe A on October 15,2015.The diffusion coefficients induced by these waves are calculated by using both the Full Diffusion Code and test particle simulations.Moreover,the scattering effects of these waves on energetic electrons are simulated by using a two-dimensional Fokker-Planck diffusion model.The results show that ECH waves mainly scatter low-pitch-angle(<20°)electrons at 0.1-10 keV;exohiss can significantly scatter hundreds of kiloelectron volt electrons to form a reversed energy spectrum;MS waves mainly affect high-pitch-angle electrons(>60°);and EMIC waves scatter only>5 MeV electrons.The combined scattering effects of exohiss and MS waves are stronger than those of exohiss alone.The top-hat pitch angle distributions produced by exohiss are relaxed after adding the effect of MS waves.Because the energies of electrons scattered by ECH waves and EMIC waves are much lower and higher than those scattered by exohiss and MS waves,respectively,the combined scattering effects with the addition of ECH and EMIC waves show little difference from the results for the combination of MS waves and exohiss.These results suggest that distinct wave modes can occur simultaneously and scatter electrons in combination or individually,which requires careful consideration in future global simulations of the complex dynamics of radiation belt energetic electrons.展开更多
磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到...磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到。频率分析显示,ULF波的周期、质子各向异性周期和EMIC波包的周期非常接近。MMS-4卫星在约1 h后经过附近空间区域,研究发现随着ULF波的幅度减弱,EMIC波包的准周期性也逐渐减弱。研究结果为ULF波在日侧外磁层调制质子各向异性从而产生周期性EMIC波包提供了完整的观测证据链。同时,观测结果进一步证明,这种ULF波调制的EMIC波包能够在大于2Re的空间尺度内发生,且能够持续存在于几个小时以上的时间尺度。展开更多
With the rapid development of electronic technology,how to effectively eliminate electromagnetic pollu-tion has become a serious problem.Perovskite oxides have shown great potential in the field of electro-magnetic wa...With the rapid development of electronic technology,how to effectively eliminate electromagnetic pollu-tion has become a serious problem.Perovskite oxides have shown great potential in the field of electro-magnetic wave absorption due to their unique structure and excellent physicochemical properties.Herein,by rationally manipulating the A-site ion substitution strategy,the theoretically directed doping of Sr ions into La ionic sites was utilized and the layered MoS_(2) was loaded by the hydrothermal process to modify its surface.Consequently,the introduced polarization phenomenon improved the dielectric performance of the perovskite oxides,achieving a collaborative dielectric/magnetic loss mechanism.Accordingly,the prepared La0.7Sr0.3FeO3(LSFO)/MoS_(2) as coating filler in the epoxy resin coating system can obtain the minimum reflection loss of-67.09 dB at 1.9 mm and the maximum effective absorption bandwidth of 7.28 GHz at 2.3 mm.More importantly,it also exhibits excellent absorption performance for multi-band electromagnetic waves,covering a wide range of specified frequency bands.It provides inspiration for ex-ploring novel perovskite oxide-based electromagnetic wave absorbing coatings and broadens the choice of ideal candidate materials for designing highly efficient,multi-band absorbers to cope with sophisticated electromagnetic environments.展开更多
With coordinated observations of the NOAA 15 satellite and OUL magnetometer station in Finland, we report that the elec- tromagnetic ion cyclotron (EMIC) waves which were stimulated by the compression of the magneto...With coordinated observations of the NOAA 15 satellite and OUL magnetometer station in Finland, we report that the elec- tromagnetic ion cyclotron (EMIC) waves which were stimulated by the compression of the magnetosphere drive relativistic electron precipitation in geoquiescence on 1 Jan 2007. After an enhancement of solar wind dynamic pressure (SWDP), a day- side Pcl pulsation was observed by the OUL station. Such a Pcl pulsation is caused by an EMIC wave which propagates from the generation source to lower altitudes. Simultaneously, the NOAA 15 satellite registered an enhancement of precipitating electron count rates with energies 〉3 MeV within the anisotropic zone of protons. This phenomenon is coincident with the quasi-linear theoretical calculation presented in this paper. Our observations suggest that after a positive impulse of solar wind, the compression-related EMIC waves can drive relativistic electrons precipitation and play a pivotal role in the dynamic of ra- diation belts.展开更多
Previous studies have shown that EMIC waves occur preferentially in the afternoon sector of the magnetosphere.Here we report obliquely propagating H^(+)and He^(+)band EMIC waves detected by Van Allen Probe B in the re...Previous studies have shown that EMIC waves occur preferentially in the afternoon sector of the magnetosphere.Here we report obliquely propagating H^(+)and He^(+)band EMIC waves detected by Van Allen Probe B in the region of MLT=22.7–23.5 during the June 20,2013 substorm.Using the correlated energetic proton data,we present continuous calculations on EMIC wave growth rates along the inward orbit in the region L=5.5–4.2.The modeled growth rate shows remarkable agreement with the observed double band EMIC waves in both temporal and spatial evolutions.The current results demonstrate that H^(+)and He^(+)band EMIC waves can be simultaneously excited in the midnight sector under appropriate conditions.展开更多
Gravitational waves(GWs)from compact binary coalescences can be used as standard sirens to explore the cosmic expansion history.In the next decades,it is anticipated that we could obtain the multi-band GW standard sir...Gravitational waves(GWs)from compact binary coalescences can be used as standard sirens to explore the cosmic expansion history.In the next decades,it is anticipated that we could obtain the multi-band GW standard siren data(from nanohertz to a few hundred hertz),which are expected to play an important role in cosmological parameter estimation.In this work,we provide,for the first time to the best of our knowledge,joint constraints on cosmological parameters using the future multi-band GW standard siren observations.We simulate the multi-band GW standard sirens based on the SKA-era pulsar timing array(PTA),Taiji observatory,and Cosmic Explorer(CE)to perform cosmological analysis.In theΛCDM model,we find that the joint PTA+Taiji+CE data could provide a tight constraint on the Hubble constant with a 0.5%precision.Moreover,PTA+Taiji+CE could break the cosmological parameter degeneracies generated by CMB,especially in the dynamical dark energy models.When combining the PTA+Taiji+CE data with the CMB data,the constraint precisions of?_(m)and H_(0)are 1.0%and 0.3%,respectively,meeting the standard of precision cosmology.The joint CMB+PTA+Taiji+CE data giveσ(_(w))=0.028 in the wCDM model andσ(w_(0))=0.11 andσ(w_(a))=0.32 in the w_(0)w_(a)CDM model,which are comparable with or close to the latest constraint results by CMB+BAO+SN.In conclusion,the future multi-band GW observations are expected to be used for exploring the nature of dark energy and measuring the Hubble constant.展开更多
Electromagnetic ion cyclotron(EMIC)emission is an efficient mechanism for scattering loss of energetic protons.Here,we report an event that provides both in-situ observation of energetic proton differential fluxes in ...Electromagnetic ion cyclotron(EMIC)emission is an efficient mechanism for scattering loss of energetic protons.Here,we report an event that provides both in-situ observation of energetic proton differential fluxes in the inner magnetosphere and precipitation of protons at ionospheric altitudes.During the 7-8 September 2015 geomagnetic storm the Van Allen Probes observed strong EMIC waves around L=5 and a distinct decrement in fluxes of tens of keV protons around pitch angles 0°-45°.Meanwhile,precipitating protons at ionospheric altitudes were found to significantly enhanced(by several orders of magnitude),measured by NOAA 18 and 19 when they magnetically linked to the Van Allen Probe-A.By solving the Fokker-Planck diffusion equation,we show that EMIC waves can efficiently produce loss of energetic protons within about 2 h in the pitch angle range of~0°-45°,comparable to the satellite observations.展开更多
波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观...波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观测事件.在等离子体层的内边界,Van Allen Probe B卫星观测到,存在EMIC波的区域和不存在EMIC波的区域相比,离子通量的投掷角分布的各向异性变弱.我们将Van Allen Probe B卫星沿着磁力线投影到电离层高度,同时在该投影区域内DMSP 16卫星在亚极光区域观测到环电流质子沉降.而且,通过从理论上计算质子弹跳平均扩散系数,我们进一步证实观测的EMIC波确实能将环电流质子散射到损失锥中.本文的研究工作为EMIC波导致环电流质子沉降提供了直接的观测证据,揭示了环电流衰减的重要物理机制:EMIC波将环电流质子散射到损失锥中,从而沉降到低高度大气层中而损失.展开更多
A fully non-contact experimental platform for ultrasonic Lamb wave damage detection was constructed,where laser exciting and the scanning laser Doppler vibrometer were used to realize the high-resolution pickup of the...A fully non-contact experimental platform for ultrasonic Lamb wave damage detection was constructed,where laser exciting and the scanning laser Doppler vibrometer were used to realize the high-resolution pickup of the Lamb wave field in the structure,which has overcome the disadvantages of low spatial resolution caused by the conventional contact Lamb wave transducer.In order to suppress the dispersion effect of broadband laser-ultrasonic signal,we proposed time-domain filtering in multi-band method based on wavelet analysis to decompose the broadband signal into multiple narrowband ones and separate the scattering signals effectively without reference signal.On this basis,the total focusing method(TFM)was used for damage imaging.However,when the traditional TFM was applied to image based on ultrasonic Lamb wave,the inherent dispersion characteristic of ultrasonic Lamb wave could lead to the miscalculation of time delay,thus reducing the imaging precision.Therefore,the frequency-domain TFM was developed by applying phase delay in the frequency domain.The logical AND was introduced to synthesize the damage imaging results of multiple narrowband signals to obtain high-precision damage imaging.Our study has shown that the method of time-domain filtering in multi-band combining with frequency-domain TFM can realize non-contact and accurate damage detection in isotropic plate structures,and it is a potential effective method for application in engineering practice.展开更多
We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-depende...We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions(PAD)first developed at L^(*)=5.5 and then moved down to L^(*)<4.According to the evolution of the electron phase space density(PSD)profile,losses of electrons with small pitch angles at L^(*)>4 during SWDE1 are mainly due to outward radial diffusion.However during SWDE2&3,scattering loss due to EMIC waves is dominant at 4<L^(*)<5.As for electrons with large pitch angles,outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell(LCDS).The inner edge of EMIC wave activity moved from L^(*)~5 to L^(*)~4 and from L~6.4 to L~4.2 from SWDE1 to SWDE2&3,respectively,observed by Van Allen Probes and by ground stations.This is consistent with the inward penetration of anisotropic energetic protons from L^(*)=4.5 to L^(*)=3.5,suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.展开更多
Gravitational wave signal from the inspiral of stellar-mass binary black hole can be used as standard sirens to perform cosmological inference.This inspiral covers a wide range of frequency bands,from the millihertz b...Gravitational wave signal from the inspiral of stellar-mass binary black hole can be used as standard sirens to perform cosmological inference.This inspiral covers a wide range of frequency bands,from the millihertz band to the audio-band,allowing for detections by both space-borne and ground-based gravitational wave detectors.In this work,we conduct a comprehensive study on the ability to constrain the Hubble constant using the dark standard sirens,or gravitational wave events that lack electromagnetic counterparts.To acquire the redshift information,we weight the galaxies within the localization error box with photometric information from several bands and use them as a proxy for the binary black hole redshift.We discover that Tian Qin is expected to constrain the Hubble constant to a precision of roughly 30%through detections of 10 gravitational wave events;in the most optimistic case,the Hubble constant can be constrained to a precision of<10%,assuming Tian Qin I+II.In the optimistic case,the multi-detector network of Tian Qin and LISA is capable of constraining the Hubble constant to within 5%precision.It is worth highlighting that the multi-band network of Tian Qin and Einstein Telescope is capable of constraining the Hubble constant to a precision of about 1%.We conclude that inferring the Hubble constant without bias from photo-z galaxy catalog is achievable,and we also demonstrate self-consistency using the P-P plot.On the other hand,high-quality spectroscopic redshift information is crucial for improving the estimation precision of Hubble constant.展开更多
基金the National Natural Science Foundation of China(41925018,41874194).
文摘We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be locally peaked at the magnetic equator.Perpendicular fluxes of ions(<100 eV)increase simultaneously with the appearances of EMIC waves,indicating a heating of these ions by EMIC waves.In addition,the measured ion distributions also support the equatorial peak formation,which accords with the result of the frequency analyses.The formation of local mass density peaks at the equator should be due to enhancements of equatorial ion concentrations,which are triggered by EMIC waves’perpendicular heating on low energy ions.
基金National Natural Science Foundation of China (Nos.40874076,40774078,40774079 and 40536029)the Special Fund for Public Welfare Industry (meteorology)GYHY200806072the Visiting Scholar Foundation of State Key Laboratory for Space Weather,Chinese Academy of Sciences
文摘The gyroresonant interaction between electromagnetic ion cyclotron (EMIC) waves and energetic particles was studied in a multi-ion (H^+, He^+, and O^+) plasma. The minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Daa were calculated at the center location of the symmetrical ring current: r ≈3.5RE with RE the Earth's radius. Emin is found to decrease rapidly from 10 MeV to a few keV with the increase in ca in three bands: H^+-band, He^+-band and O^+-band. Moreover, EMIC waves have substantial potential to scatter energetic (~100 keV) ions (mainly H^+ and He^+) into the loss cone and yield precipitation loss, suggesting that wave-particle interactions contribute to ring current decay.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42188101, 42174190, 42025404, and 41904143)the Fundamental Research Funds for the Central Universities (Grant No. 2042021kf0016)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the pre-research projects on Civil Aerospace Technologies funded by the China National Space Administration (Grant Nos. D020308 and D020104)the China Postdoctoral Science Foundation Project (Grant No. 2019M662700)
文摘We report a representative concurrent event of four wave modes at L≈5.0,including electrostatic electron cyclotron harmonic(ECH)waves,exohiss,magnetosonic(MS)waves,and electromagnetic ion cyclotron(EMIC)waves,based on the observations from Van Allen Probe A on October 15,2015.The diffusion coefficients induced by these waves are calculated by using both the Full Diffusion Code and test particle simulations.Moreover,the scattering effects of these waves on energetic electrons are simulated by using a two-dimensional Fokker-Planck diffusion model.The results show that ECH waves mainly scatter low-pitch-angle(<20°)electrons at 0.1-10 keV;exohiss can significantly scatter hundreds of kiloelectron volt electrons to form a reversed energy spectrum;MS waves mainly affect high-pitch-angle electrons(>60°);and EMIC waves scatter only>5 MeV electrons.The combined scattering effects of exohiss and MS waves are stronger than those of exohiss alone.The top-hat pitch angle distributions produced by exohiss are relaxed after adding the effect of MS waves.Because the energies of electrons scattered by ECH waves and EMIC waves are much lower and higher than those scattered by exohiss and MS waves,respectively,the combined scattering effects with the addition of ECH and EMIC waves show little difference from the results for the combination of MS waves and exohiss.These results suggest that distinct wave modes can occur simultaneously and scatter electrons in combination or individually,which requires careful consideration in future global simulations of the complex dynamics of radiation belt energetic electrons.
文摘磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到。频率分析显示,ULF波的周期、质子各向异性周期和EMIC波包的周期非常接近。MMS-4卫星在约1 h后经过附近空间区域,研究发现随着ULF波的幅度减弱,EMIC波包的准周期性也逐渐减弱。研究结果为ULF波在日侧外磁层调制质子各向异性从而产生周期性EMIC波包提供了完整的观测证据链。同时,观测结果进一步证明,这种ULF波调制的EMIC波包能够在大于2Re的空间尺度内发生,且能够持续存在于几个小时以上的时间尺度。
基金National Natural Science Foundation of China(No.52301192)Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+2 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural Functional Polymer Composites)Special Financial of Shandong Province(Structural Design of High-efficiency Electromag-netic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams).
文摘With the rapid development of electronic technology,how to effectively eliminate electromagnetic pollu-tion has become a serious problem.Perovskite oxides have shown great potential in the field of electro-magnetic wave absorption due to their unique structure and excellent physicochemical properties.Herein,by rationally manipulating the A-site ion substitution strategy,the theoretically directed doping of Sr ions into La ionic sites was utilized and the layered MoS_(2) was loaded by the hydrothermal process to modify its surface.Consequently,the introduced polarization phenomenon improved the dielectric performance of the perovskite oxides,achieving a collaborative dielectric/magnetic loss mechanism.Accordingly,the prepared La0.7Sr0.3FeO3(LSFO)/MoS_(2) as coating filler in the epoxy resin coating system can obtain the minimum reflection loss of-67.09 dB at 1.9 mm and the maximum effective absorption bandwidth of 7.28 GHz at 2.3 mm.More importantly,it also exhibits excellent absorption performance for multi-band electromagnetic waves,covering a wide range of specified frequency bands.It provides inspiration for ex-ploring novel perovskite oxide-based electromagnetic wave absorbing coatings and broadens the choice of ideal candidate materials for designing highly efficient,multi-band absorbers to cope with sophisticated electromagnetic environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.41374168,41174140,41174147 and 41004060)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110141110043)the Fundamental Research Funds for the Central Universities of China(Grant No.2012212020204)
文摘With coordinated observations of the NOAA 15 satellite and OUL magnetometer station in Finland, we report that the elec- tromagnetic ion cyclotron (EMIC) waves which were stimulated by the compression of the magnetosphere drive relativistic electron precipitation in geoquiescence on 1 Jan 2007. After an enhancement of solar wind dynamic pressure (SWDP), a day- side Pcl pulsation was observed by the OUL station. Such a Pcl pulsation is caused by an EMIC wave which propagates from the generation source to lower altitudes. Simultaneously, the NOAA 15 satellite registered an enhancement of precipitating electron count rates with energies 〉3 MeV within the anisotropic zone of protons. This phenomenon is coincident with the quasi-linear theoretical calculation presented in this paper. Our observations suggest that after a positive impulse of solar wind, the compression-related EMIC waves can drive relativistic electrons precipitation and play a pivotal role in the dynamic of ra- diation belts.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41974212,41531072,41674166 and 41774194)the Hunan Provincial Natural Science Foundation of China(Grant No.2018JJ2425)。
文摘Previous studies have shown that EMIC waves occur preferentially in the afternoon sector of the magnetosphere.Here we report obliquely propagating H^(+)and He^(+)band EMIC waves detected by Van Allen Probe B in the region of MLT=22.7–23.5 during the June 20,2013 substorm.Using the correlated energetic proton data,we present continuous calculations on EMIC wave growth rates along the inward orbit in the region L=5.5–4.2.The modeled growth rate shows remarkable agreement with the observed double band EMIC waves in both temporal and spatial evolutions.The current results demonstrate that H^(+)and He^(+)band EMIC waves can be simultaneously excited in the midnight sector under appropriate conditions.
基金Supported by the National SKA Program of China(2022SKA0110200,2022SKA0110203)the National Natural Science Foundation of China(11975072,11875102,11835009)。
文摘Gravitational waves(GWs)from compact binary coalescences can be used as standard sirens to explore the cosmic expansion history.In the next decades,it is anticipated that we could obtain the multi-band GW standard siren data(from nanohertz to a few hundred hertz),which are expected to play an important role in cosmological parameter estimation.In this work,we provide,for the first time to the best of our knowledge,joint constraints on cosmological parameters using the future multi-band GW standard siren observations.We simulate the multi-band GW standard sirens based on the SKA-era pulsar timing array(PTA),Taiji observatory,and Cosmic Explorer(CE)to perform cosmological analysis.In theΛCDM model,we find that the joint PTA+Taiji+CE data could provide a tight constraint on the Hubble constant with a 0.5%precision.Moreover,PTA+Taiji+CE could break the cosmological parameter degeneracies generated by CMB,especially in the dynamical dark energy models.When combining the PTA+Taiji+CE data with the CMB data,the constraint precisions of?_(m)and H_(0)are 1.0%and 0.3%,respectively,meeting the standard of precision cosmology.The joint CMB+PTA+Taiji+CE data giveσ(_(w))=0.028 in the wCDM model andσ(w_(0))=0.11 andσ(w_(a))=0.32 in the w_(0)w_(a)CDM model,which are comparable with or close to the latest constraint results by CMB+BAO+SN.In conclusion,the future multi-band GW observations are expected to be used for exploring the nature of dark energy and measuring the Hubble constant.
基金supported by the National Natural Science Foundation of China(Grant Nos.41774194,41974212 and 42074198)the Specialized Research Fund for State Key Laboratories。
文摘Electromagnetic ion cyclotron(EMIC)emission is an efficient mechanism for scattering loss of energetic protons.Here,we report an event that provides both in-situ observation of energetic proton differential fluxes in the inner magnetosphere and precipitation of protons at ionospheric altitudes.During the 7-8 September 2015 geomagnetic storm the Van Allen Probes observed strong EMIC waves around L=5 and a distinct decrement in fluxes of tens of keV protons around pitch angles 0°-45°.Meanwhile,precipitating protons at ionospheric altitudes were found to significantly enhanced(by several orders of magnitude),measured by NOAA 18 and 19 when they magnetically linked to the Van Allen Probe-A.By solving the Fokker-Planck diffusion equation,we show that EMIC waves can efficiently produce loss of energetic protons within about 2 h in the pitch angle range of~0°-45°,comparable to the satellite observations.
文摘波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观测事件.在等离子体层的内边界,Van Allen Probe B卫星观测到,存在EMIC波的区域和不存在EMIC波的区域相比,离子通量的投掷角分布的各向异性变弱.我们将Van Allen Probe B卫星沿着磁力线投影到电离层高度,同时在该投影区域内DMSP 16卫星在亚极光区域观测到环电流质子沉降.而且,通过从理论上计算质子弹跳平均扩散系数,我们进一步证实观测的EMIC波确实能将环电流质子散射到损失锥中.本文的研究工作为EMIC波导致环电流质子沉降提供了直接的观测证据,揭示了环电流衰减的重要物理机制:EMIC波将环电流质子散射到损失锥中,从而沉降到低高度大气层中而损失.
基金This work is supported by the National Science Foundation of China(NSFC)with agreement No.11520101001.This paper continues to study on the basis of the work of Chen Li,Fan Min and Zhou Lei.thank you!I also would like to thank my mentor Professor Luo Ying for his guidance and help.
文摘A fully non-contact experimental platform for ultrasonic Lamb wave damage detection was constructed,where laser exciting and the scanning laser Doppler vibrometer were used to realize the high-resolution pickup of the Lamb wave field in the structure,which has overcome the disadvantages of low spatial resolution caused by the conventional contact Lamb wave transducer.In order to suppress the dispersion effect of broadband laser-ultrasonic signal,we proposed time-domain filtering in multi-band method based on wavelet analysis to decompose the broadband signal into multiple narrowband ones and separate the scattering signals effectively without reference signal.On this basis,the total focusing method(TFM)was used for damage imaging.However,when the traditional TFM was applied to image based on ultrasonic Lamb wave,the inherent dispersion characteristic of ultrasonic Lamb wave could lead to the miscalculation of time delay,thus reducing the imaging precision.Therefore,the frequency-domain TFM was developed by applying phase delay in the frequency domain.The logical AND was introduced to synthesize the damage imaging results of multiple narrowband signals to obtain high-precision damage imaging.Our study has shown that the method of time-domain filtering in multi-band combining with frequency-domain TFM can realize non-contact and accurate damage detection in isotropic plate structures,and it is a potential effective method for application in engineering practice.
基金supported by NSFC grants 41474139,41731068,and 41674164the support from the China Postdoctoral Science Foundation through grant 2019 M650316。
文摘We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions(PAD)first developed at L^(*)=5.5 and then moved down to L^(*)<4.According to the evolution of the electron phase space density(PSD)profile,losses of electrons with small pitch angles at L^(*)>4 during SWDE1 are mainly due to outward radial diffusion.However during SWDE2&3,scattering loss due to EMIC waves is dominant at 4<L^(*)<5.As for electrons with large pitch angles,outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell(LCDS).The inner edge of EMIC wave activity moved from L^(*)~5 to L^(*)~4 and from L~6.4 to L~4.2 from SWDE1 to SWDE2&3,respectively,observed by Van Allen Probes and by ground stations.This is consistent with the inward penetration of anisotropic energetic protons from L^(*)=4.5 to L^(*)=3.5,suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)the National Natural Science Foundation of China(Grant Nos.12173104,11805286,and 11690022)the National Key Research and Development Program of China(Grant No.2020YFC2201400)。
文摘Gravitational wave signal from the inspiral of stellar-mass binary black hole can be used as standard sirens to perform cosmological inference.This inspiral covers a wide range of frequency bands,from the millihertz band to the audio-band,allowing for detections by both space-borne and ground-based gravitational wave detectors.In this work,we conduct a comprehensive study on the ability to constrain the Hubble constant using the dark standard sirens,or gravitational wave events that lack electromagnetic counterparts.To acquire the redshift information,we weight the galaxies within the localization error box with photometric information from several bands and use them as a proxy for the binary black hole redshift.We discover that Tian Qin is expected to constrain the Hubble constant to a precision of roughly 30%through detections of 10 gravitational wave events;in the most optimistic case,the Hubble constant can be constrained to a precision of<10%,assuming Tian Qin I+II.In the optimistic case,the multi-detector network of Tian Qin and LISA is capable of constraining the Hubble constant to within 5%precision.It is worth highlighting that the multi-band network of Tian Qin and Einstein Telescope is capable of constraining the Hubble constant to a precision of about 1%.We conclude that inferring the Hubble constant without bias from photo-z galaxy catalog is achievable,and we also demonstrate self-consistency using the P-P plot.On the other hand,high-quality spectroscopic redshift information is crucial for improving the estimation precision of Hubble constant.