期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Multi-blade rubbing characteristics of the shaft-disk-blade-casing system with large rotation
1
作者 Zhiyuan WU Linchuan ZHAO +3 位作者 Han YAN Ge YAN Ao CHEN Wenming ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期111-136,共26页
Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the b... Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery. 展开更多
关键词 shaft-disk-blade-casing(SDBC) large rotation spin and whirl multi-blade rubbing rotational effect
下载PDF
Numerical investigation on the flow and power of small-sized multi-bladed straight Darrieus wind turbine 被引量:10
2
作者 JIANG Zhi-chao DOI Yasuaki ZHANG Shu-you 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1414-1421,共8页
Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especia... Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper,mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation,an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method,the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine. 展开更多
关键词 Small-sized Straight Darrieus wind turbine multi-bladed Power coefficient
下载PDF
Computational Fluid Dynamics Analysis of Multi-Bladed Horizontal Axis Wind Turbine Rotor
3
作者 Nasim A. Mamaghani Peter E. Jenkins 《World Journal of Mechanics》 2020年第9期121-138,共18页
The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance... The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine. 展开更多
关键词 Computational Fluid Dynamics Horizontal Axis Wind Turbine multi-bladed Rotor Aerodynamic Torque
下载PDF
Performances and Acoustic Noise of Micro Multi-blade Fan
4
作者 Ryotaro Hidaka Toshiaki Kanemoto Tetsuya Sunada 《Journal of Thermal Science》 SCIE EI CAS CSCD 2008年第4期343-348,共6页
In this paper, the performances and the acoustic noise of the traditional type micro multi-blade fan were investi- gated experimentally and numerically, to optimize the specifications of the fan for the resident circu... In this paper, the performances and the acoustic noise of the traditional type micro multi-blade fan were investi- gated experimentally and numerically, to optimize the specifications of the fan for the resident circumstances. The acoustic noise level decreases but the efficiency deteriorates slightly with the increase of the blade number of the impeller. Besides, the acoustic noise decreases with the increase of the distance between the impeller outlet and the volute tongue, in accompanying with the increase of the input and the deterioration of the fan efficiency. 展开更多
关键词 multi-blade fan Sirocco fan Performance Internal flow Flow simulation CFD Acoustic noise Efficiency Turbulent fluctuation VOLUTE
原文传递
Bionic Volute Tongue Optimization Design of Multi-blade Centrifugal Fan Inspired by the Wave Leading-edge of Humpback Whale Flippers
5
作者 Yang Liu Qi Yuan +2 位作者 Ziqian Xu Liming Wu Xiaomin Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2209-2227,共19页
The volute tongue can split the gas in the multi-blade centrifugal fan to make the gas flow to the volute outlet as much as possible.However,the unsteady axial deflection of the gas in the impeller results in differen... The volute tongue can split the gas in the multi-blade centrifugal fan to make the gas flow to the volute outlet as much as possible.However,the unsteady axial deflection of the gas in the impeller results in different air flow angles at the outlet of the impeller at different blade heights.This seriously affects the flow near the volute tongue.The wave leading-edge structure of humpback whale flippers has a very high flow control effect under complex flow conditions.Therefore,the wave leading-edge structure is studied in this paper and applied to the optimization design of multi-blade centrifugal fan volute tongue.First,based on the wave leading-edge structure of humpback whale flippers,three-dimensional wave leading-edge airfoils with different wave direction angles are established to judge the adaptability of the new wave leading-edge structure under different attack angles.Then,aiming at the internal flow field and noise characteristics of multi-blade centrifugal fan,a bionic volute tongue optimization design method is proposed,and studied its influence on the internal flow field and noise characteristics of the fan.The results show that when the wave direction angle is 45°,the wave leading-edge structure can effectively suppress the generation of the leading-edge separation vortex and the shedding of the wake vortex,which is also helpful to reduce the noise.The bionic volute tongue with the wave leading-edge structure can adapt to the situation that the impeller outlet air flow angle is small.At the maximum volume flow rate operating point,the static pressure recovery coefficient of the bionic volute tongue fan is increased by about 5%compared to the original fan,the air volume is increased by 5.16%,and the noise is reduced by 0.6 dB. 展开更多
关键词 multi-blade centrifugal fan AIRFOIL Volute tongue Biomimetic design Aerodynamic noise
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部