A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated ...A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.展开更多
Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based ...Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.展开更多
In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera th...In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera that obtained by high-precision attitude sensor to estimate the image motion vector and then to compensate for image, the purpose of stabilizing the image sequence can be a- chieved. Experiments demonstrate that this method has a high image stabilization precision, and the up to 16 frame/s video output rate completely meets the real-time requirements.展开更多
Noise,vibration and harshness(NVH)problems in vehicle engineering are always challenging in both traditional vehicles and intelligent vehicles.Although high accuracy manufacturing,modern structural roads and advanced ...Noise,vibration and harshness(NVH)problems in vehicle engineering are always challenging in both traditional vehicles and intelligent vehicles.Although high accuracy manufacturing,modern structural roads and advanced suspension technology have already significantly reduced NVH problems and their impacts;off-road condition,obstacles and extreme operating condition could still trigger NVH problems unexpectedly.This paper proposes a vehicular electronic image stabilization(EIS)system to solve the vibration problem of the camera and ensure the environment perceptive function of vehicles.Firstly,feature point detection and matching based on an oriented FAST and rotated BRIEF(ORB)algorithm are implemented to match images in the process of EIS.Furthermore,a novel improved random sampling consensus algorithm(i-RANSAC)is proposed to eliminate mismatched feature points and increase the matching accuracy significantly.And an adaptive Kalman filter(AKF)is applied to improve the adaptability of the vehicular EIS.Finally,an experimental platform based on a gasoline model car was established to validate its performance.The experimental results show that the proposed EIS system can satisfy vehicular performance requirements even under off-road condition with obvious obstacles.展开更多
A new digital image stabilization method is proposed for real-time application based on image contour. The image intensities are projected to several gray levels by thresholding before extracting contour points. Match...A new digital image stabilization method is proposed for real-time application based on image contour. The image intensities are projected to several gray levels by thresholding before extracting contour points. Matching position could be found using these contour points. All pixels are still used for refined matching near the matching position. This algorithm is more robust against changes in illumination and noise affection. The adaptive global motion judgement can remove the affection of intruding object. All those are realized on normally available PC.展开更多
An effective algorithm of electronic image stabilization (EIS) of catadioptric panoramic imaging system for track robots is presented. The key techniques of this algorithm are as follows:① A model of electronic im...An effective algorithm of electronic image stabilization (EIS) of catadioptric panoramic imaging system for track robots is presented. The key techniques of this algorithm are as follows:① A model of electronic image stabilization is built by analyzing the imaging theory and the principle of EIS, and the image shift function of unwrapped panoramic image is deduced;② The relationship equation between motion estimation parameters of annular panoramic image and motion estimation parameters of unwrapped panoramic image is developed according to the constrained aspect ratio of real objects, motion parameters of annular panoramic image are firstly estimated, and then motion parameters among the image shift function are carried out according to the relationship equation;③ An excessive stabilization threshold is presented to prevent the phenomena of excessive stabilization, and the Kalman filtering is adopted to smooth the image sequences. Numerical experimental results show that this algorithm can effectively smooth out the unwanted motion and follow the intentional camera movement under certain resolutions.展开更多
When a video camera is mounted on a vehicle’s frame, it experiences the same ride as a passenger and is subject to vertical displacement as the vehicle hits bumps on the road. This results in a captured video that ma...When a video camera is mounted on a vehicle’s frame, it experiences the same ride as a passenger and is subject to vertical displacement as the vehicle hits bumps on the road. This results in a captured video that may be difficult to watch because the bumps are transferred to the recorded video. This paper presents a new image stabilization model for vehicle navigation that can remove the effect of vertical vehicular motion due to road bumps. It uses a wheel sensor that monitors the wheel’s reaction with respect to road disturbances prior to the vehicle’s suspension system. This model employs an inexpensive sensor and control circuitry. The vehicle’s suspension system, bumpy road, and the compensation control system are modeled analytically. Experimental results show that the proposed model works suc-cessfully. It can eliminate 10 cm of drift and results in only 1 cm disturbance at the onset and the end of bumps.展开更多
This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for ...This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for the translational motion between video sequences at the same time;As for the rotary motion vector generated in the video sequences, in order to highlight the intensity change of the image sequence, the algorithm firstly conducts Laplace transform for the reference frame, then select a number of characteristics at the image edge to make block matching with the current frame, calculate and compensate for the rotational movement that may exist finally. Through theoretical analysis and simula-tion, we prove that, as for a mixed translational and rotational motion video sequences, the proposed algorithm can reduce required time for block matching computation ,while improving the accuracy of the electronic image stabilization.展开更多
The paper presents a fast algorithm for image retrieval using multi-channel textural features in medical picture archiving and communication system (PACS). By choosing different linear or nonlinear operators in pred...The paper presents a fast algorithm for image retrieval using multi-channel textural features in medical picture archiving and communication system (PACS). By choosing different linear or nonlinear operators in prediction and update lifting step, the linear or nonlinear M-band wavelet decomposition can be achieved in M-band lifting. It provides the advantages such as fast transform, in-place calculation and integer-integer transform. The set of wavelet moment forms multi-channel textural feature vector related to the texture distribution of each wavelet images. The experimental results of CT image database show that the retrieval approach of multi-channel textural features is effective for image indexing and has lower computational complexity and less memory. It is much easier to implement in hardware and suitable for the applications of real time medical processing system.展开更多
A distortion identification technique is presented based on Hilbert-Huang transform to identify distortion model and distortion frequency of distorted real-world image sequences. The distortion model is identified sim...A distortion identification technique is presented based on Hilbert-Huang transform to identify distortion model and distortion frequency of distorted real-world image sequences. The distortion model is identified simply based on Hilbert marginal spectral analysis after empirical mode decomposing. And distortion frequency is identified by analyzing the occurrence frequency of instantaneous frequency components of every intrinsic mode functions. Rational digital frequency filter with suitable cutoff frequency is designed to remove undesired fluctuations based on identification results. Experimental results show that this technique can identify distortion model and distortion frequency of displacement sequence accurately and efficiently. Based on identification results, distorted image sequence can be stabilized effectively.展开更多
BACKGROUND In recent years,the mechanical concept of intervertebral disc regeneration has become more and more popular due to the increasing awareness of the importance of preservation of spine movement.Interestingly,...BACKGROUND In recent years,the mechanical concept of intervertebral disc regeneration has become more and more popular due to the increasing awareness of the importance of preservation of spine movement.Interestingly,there is increasing evidence,however,that dynamic stabilization systems may compensate nonphysiological loads,limit pathological movement,normalize disc height and intradiscal pressure,and provide an adaptive environment for disc regeneration.CASE SUMMARY The patient was a 54-year-old man,who presented with a 10-year history of mechanical back pain,which had become progressively serious and radiated into the left lower limb with numbness 3 mo prior.He had decreased muscle strength(class IV)of the left dorsal extensor and plantar flexor.Magnetic resonance imaging scans showed L3-S1 disc degeneration and L4-L5 disc herniation.Because the patient did not respond to various conservative treatments,he underwent a posterior L4-5 discectomy with fixation of the BioFlex dynamic stabilization system(Bio-Spine,Seoul,Korea).Preoperative symptoms were relieved and lumbar function was markedly improved after the operation.L4-L5 disc rehydration of instrumented segment was noted on magnetic resonance imaging at the 2-year follow-up.CONCLUSION Rehydration of the degenerated disc in our patient indicates that the BioFlex dynamic stabilization system may promote disc regeneration.Further research is needed to provide more evidence to support lumbar disc rehydration in the bridged segment using this system.展开更多
The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications ...The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications of the payload, the mete- orological imager (MI), have been verified during both ground and in-orbit tests, there is the possibility of variation and/or degradation of data quality due to many different reasons, such as the accumulation of contaminants, the aging of instrument components, and unexpected external disturbance. Thus, for better utilization of MI data, it is imperative to continuously monitor and maintain the data quality. As a part of such activity, this study presents an inter-calibration, based on the Global Space-based Inter-Calibration System (GSICS), between the MI data and the high quality hyperspectral data from the In- frared Atmospheric Sounding Interferometer (IASI) of the Metop-A satellite. Both sets of data, acquired for three years from April 2011 to March 2014, are processed to prepare the matchup dataset, which is spatially collocated, temporally concurrent, angularly coincident, and spectrally comparable. The results show that the MI data are stable within the specifications and show no significant degradation during the study period. However, the water vapor channel shows a rather large bias value of -0.77 K, with a root-mean-square difference (RMSD) of around 1.1 K, which is thought to be due to the shift in the spectral response function. The shortwave channel shows a maximum RMSD of around 1.39 K, mainly due to the coarse digitization at the lower temperature. The inter-comparison results are re-checked through a sensitivity analysis with different sets of threshold values used for the matchup dataset. Based on this, we confirm that the overall quality of the MI data meets the user requirements and maintains the expected performance, although the water vapor channel requires further investigation.展开更多
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera...The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.展开更多
Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morp...Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morphology is to use construction ele- ment measure image morphology for solving understand problem.The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter.It gave the theo- ries of MMCNN dynamic extent and stable state.It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.展开更多
Palm vein hidden under the skin and its distribution feature is hard to be stolen, which makes the palm vein recognition to be a high security biometric authentication method. Contact-less palm vein imaging can avoid ...Palm vein hidden under the skin and its distribution feature is hard to be stolen, which makes the palm vein recognition to be a high security biometric authentication method. Contact-less palm vein imaging can avoid the spread of disease, thus expanding the application range of palm vein biometric authentication devices. However, due to the different un-derstanding of the right imaging position and the change of fingers open degree, contact-less palm vein image acquisi-tion led to a certain degree of translation, rotation, scaling and shear, that is, the image deformation. Image deformation causes the imaging feature unstable. In this paper, the effect of image deformation to the stability of palm vein features is studied by some similarity parameters. First, feature points in the palm were marked, contact-less imaging and con-tact imaging of palm vein were acquired. Then, this paper calculated the similarity parameters of the contact-less imag-ing to contact imaging and gave corresponding analysis. Experimental results show that contact-less palm vein imagingwas stable, and derived the linear regression equation of relationship between sample space and the recognition rate: y =?0.000903x + 1.0332, coefficient of determination R2 = 0.9824. This research provided effective and detailed data to the study of contact-less palm vein recognition and gave powerful support to contact-less multi-feature fusion recogni-tion based on hand.展开更多
In order to improve the exploration effect of deep non-ferrous mineral resources, multi-channel observation methods for induced polarization (IP) electrical sounding data and their inversion imaging technology are s...In order to improve the exploration effect of deep non-ferrous mineral resources, multi-channel observation methods for induced polarization (IP) electrical sounding data and their inversion imaging technology are studied. First of all, four multi-channel observation methods are developed based on conventional IP electrical method, namely three-electrode and four-electrode arrays of unilateral and bilateral current transmitting. Then the maximum smoothness constrained inversion method of the least squares sense for IP electrical sounding data is proposed, and the inversion software is programmed. Finally, the simulation and inversion results of geo-electrical model for the proposed observation methods are analyzed. And the comparison results show that three-electrode array of bilateral current transmitting gives the best result, but the intensity in field work is larger than others; unilateral three-electrode and four-electrode arrays give the better results. Taking detection results and convenience of field exploration work into consideration, these two methods are more suitable for practical application; bilateral observation method of four-electrode array is not suitable for the detection of the steep ore bodies.展开更多
Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic,...Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic, chromium, lead, manganese and nickel. For this, scrap tires are used as light- weight alternative materials in many engineering applications, such as retaining wall backfilling. In the present study, 90 laboratory models were prepared to evaluate the stability of mechanically stabilized earth (MSE) walls with plate anchors. Then, the bearing capacity and horizontal displacements of the retaining walls were monitored by exerting a static loading to investigate the effects of adding different contents (5 wt%, 10 wt%, 15 wt% and 20 wt%) of recycled crumb rubber (RCR) to the fill of a mechanically stabilized retaining wall with plate anchors. To visualize the critical slip surface of the wall, the particle image velocimetry (PIV) technique was employed. Results showed that the circular anchor plates almost continually provided a higher bearing capacity and wall stability than the square plates. Moreover, the backfill with 15 wt% RCR provided the maximum bearing capacity of the wall. Increasing the weight percentage of RCR to 20 wt% resulted in a significant reduction in horizontal displacement of the wall, which occurred due to the decrease in lateral earth pressure against the whole walls. An increase in RCR content resulted in the decrease in the formation of failure wedge and the expansion of the wall slip surface, and the failure wedge did not form in the sand mixtures with 15 wt% and 20 wt% RCRs.展开更多
This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation techn...This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation technique and the linear unbiased estimation method. The estimation gains are developed by solving a set of Riccati equations, and a stability result about the state estimation is shown. Finally, an example is given to illustrate the efficiency of the receding horizon state estimation.展开更多
Inspired by the unique structure of insect compound eyes,a multi-channel image acquisition system is designed to photograph a cylindrical panorama of its surroundings with one shot. The hardware structure consists of ...Inspired by the unique structure of insect compound eyes,a multi-channel image acquisition system is designed to photograph a cylindrical panorama of its surroundings with one shot. The hardware structure consists of an embedded ARM system and one array of 16 micro-image sensors. The system achieves the synchronization of captured photos in 10 ms,as well as 10 f /s video capture. The software architecture includes the TCP /IP protocol,video capture procedures in"Poll/Read"or"video streaming"modes,thread pool monitoring in multi-threading mutex,synchronization control with the"event""mutex signal"and"critical region"functions,and a synthetic image algorithm characterized by its portability,modularity,and remote transmission. The panoramic imaging system is expected to be a vision sensor for mobile robotics.展开更多
基金the National Natural Science Foundation (60572152) of China and Science Foundation ofShaanxi Province (2005F26)
文摘A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.
基金supported by the National Natural Science Foundation of China(6110118561302145)
文摘Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.
文摘In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera that obtained by high-precision attitude sensor to estimate the image motion vector and then to compensate for image, the purpose of stabilizing the image sequence can be a- chieved. Experiments demonstrate that this method has a high image stabilization precision, and the up to 16 frame/s video output rate completely meets the real-time requirements.
基金National Natural Science Foundation of China(Grant Nos.52072072,52025121 and 51605087).
文摘Noise,vibration and harshness(NVH)problems in vehicle engineering are always challenging in both traditional vehicles and intelligent vehicles.Although high accuracy manufacturing,modern structural roads and advanced suspension technology have already significantly reduced NVH problems and their impacts;off-road condition,obstacles and extreme operating condition could still trigger NVH problems unexpectedly.This paper proposes a vehicular electronic image stabilization(EIS)system to solve the vibration problem of the camera and ensure the environment perceptive function of vehicles.Firstly,feature point detection and matching based on an oriented FAST and rotated BRIEF(ORB)algorithm are implemented to match images in the process of EIS.Furthermore,a novel improved random sampling consensus algorithm(i-RANSAC)is proposed to eliminate mismatched feature points and increase the matching accuracy significantly.And an adaptive Kalman filter(AKF)is applied to improve the adaptability of the vehicular EIS.Finally,an experimental platform based on a gasoline model car was established to validate its performance.The experimental results show that the proposed EIS system can satisfy vehicular performance requirements even under off-road condition with obvious obstacles.
文摘A new digital image stabilization method is proposed for real-time application based on image contour. The image intensities are projected to several gray levels by thresholding before extracting contour points. Matching position could be found using these contour points. All pixels are still used for refined matching near the matching position. This algorithm is more robust against changes in illumination and noise affection. The adaptive global motion judgement can remove the affection of intruding object. All those are realized on normally available PC.
基金Supported by State Key Laboratory of Explosion Science and Technology Foundation(ZDKT08-05)
文摘An effective algorithm of electronic image stabilization (EIS) of catadioptric panoramic imaging system for track robots is presented. The key techniques of this algorithm are as follows:① A model of electronic image stabilization is built by analyzing the imaging theory and the principle of EIS, and the image shift function of unwrapped panoramic image is deduced;② The relationship equation between motion estimation parameters of annular panoramic image and motion estimation parameters of unwrapped panoramic image is developed according to the constrained aspect ratio of real objects, motion parameters of annular panoramic image are firstly estimated, and then motion parameters among the image shift function are carried out according to the relationship equation;③ An excessive stabilization threshold is presented to prevent the phenomena of excessive stabilization, and the Kalman filtering is adopted to smooth the image sequences. Numerical experimental results show that this algorithm can effectively smooth out the unwanted motion and follow the intentional camera movement under certain resolutions.
文摘When a video camera is mounted on a vehicle’s frame, it experiences the same ride as a passenger and is subject to vertical displacement as the vehicle hits bumps on the road. This results in a captured video that may be difficult to watch because the bumps are transferred to the recorded video. This paper presents a new image stabilization model for vehicle navigation that can remove the effect of vertical vehicular motion due to road bumps. It uses a wheel sensor that monitors the wheel’s reaction with respect to road disturbances prior to the vehicle’s suspension system. This model employs an inexpensive sensor and control circuitry. The vehicle’s suspension system, bumpy road, and the compensation control system are modeled analytically. Experimental results show that the proposed model works suc-cessfully. It can eliminate 10 cm of drift and results in only 1 cm disturbance at the onset and the end of bumps.
文摘This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for the translational motion between video sequences at the same time;As for the rotary motion vector generated in the video sequences, in order to highlight the intensity change of the image sequence, the algorithm firstly conducts Laplace transform for the reference frame, then select a number of characteristics at the image edge to make block matching with the current frame, calculate and compensate for the rotational movement that may exist finally. Through theoretical analysis and simula-tion, we prove that, as for a mixed translational and rotational motion video sequences, the proposed algorithm can reduce required time for block matching computation ,while improving the accuracy of the electronic image stabilization.
文摘The paper presents a fast algorithm for image retrieval using multi-channel textural features in medical picture archiving and communication system (PACS). By choosing different linear or nonlinear operators in prediction and update lifting step, the linear or nonlinear M-band wavelet decomposition can be achieved in M-band lifting. It provides the advantages such as fast transform, in-place calculation and integer-integer transform. The set of wavelet moment forms multi-channel textural feature vector related to the texture distribution of each wavelet images. The experimental results of CT image database show that the retrieval approach of multi-channel textural features is effective for image indexing and has lower computational complexity and less memory. It is much easier to implement in hardware and suitable for the applications of real time medical processing system.
基金Supported by the President Fund of Graduate University, Chinese Academy of Sciences.
文摘A distortion identification technique is presented based on Hilbert-Huang transform to identify distortion model and distortion frequency of distorted real-world image sequences. The distortion model is identified simply based on Hilbert marginal spectral analysis after empirical mode decomposing. And distortion frequency is identified by analyzing the occurrence frequency of instantaneous frequency components of every intrinsic mode functions. Rational digital frequency filter with suitable cutoff frequency is designed to remove undesired fluctuations based on identification results. Experimental results show that this technique can identify distortion model and distortion frequency of displacement sequence accurately and efficiently. Based on identification results, distorted image sequence can be stabilized effectively.
基金Supported by Foundation of Capital Medical Development,Beijing,China,No.2010026.
文摘BACKGROUND In recent years,the mechanical concept of intervertebral disc regeneration has become more and more popular due to the increasing awareness of the importance of preservation of spine movement.Interestingly,there is increasing evidence,however,that dynamic stabilization systems may compensate nonphysiological loads,limit pathological movement,normalize disc height and intradiscal pressure,and provide an adaptive environment for disc regeneration.CASE SUMMARY The patient was a 54-year-old man,who presented with a 10-year history of mechanical back pain,which had become progressively serious and radiated into the left lower limb with numbness 3 mo prior.He had decreased muscle strength(class IV)of the left dorsal extensor and plantar flexor.Magnetic resonance imaging scans showed L3-S1 disc degeneration and L4-L5 disc herniation.Because the patient did not respond to various conservative treatments,he underwent a posterior L4-5 discectomy with fixation of the BioFlex dynamic stabilization system(Bio-Spine,Seoul,Korea).Preoperative symptoms were relieved and lumbar function was markedly improved after the operation.L4-L5 disc rehydration of instrumented segment was noted on magnetic resonance imaging at the 2-year follow-up.CONCLUSION Rehydration of the degenerated disc in our patient indicates that the BioFlex dynamic stabilization system may promote disc regeneration.Further research is needed to provide more evidence to support lumbar disc rehydration in the bridged segment using this system.
基金supported by the project entitled "Development of Meteorological Satellite Operation and Application Technology" of the KMA/NMSC (Korea Meteorological Adminstration/National Meteorological Satellite Center)supported by the Eco Innovation Program of KEITI (Korea Environmental Industry & Technology Institute) (Grant No. 2013000160002)
文摘The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications of the payload, the mete- orological imager (MI), have been verified during both ground and in-orbit tests, there is the possibility of variation and/or degradation of data quality due to many different reasons, such as the accumulation of contaminants, the aging of instrument components, and unexpected external disturbance. Thus, for better utilization of MI data, it is imperative to continuously monitor and maintain the data quality. As a part of such activity, this study presents an inter-calibration, based on the Global Space-based Inter-Calibration System (GSICS), between the MI data and the high quality hyperspectral data from the In- frared Atmospheric Sounding Interferometer (IASI) of the Metop-A satellite. Both sets of data, acquired for three years from April 2011 to March 2014, are processed to prepare the matchup dataset, which is spatially collocated, temporally concurrent, angularly coincident, and spectrally comparable. The results show that the MI data are stable within the specifications and show no significant degradation during the study period. However, the water vapor channel shows a rather large bias value of -0.77 K, with a root-mean-square difference (RMSD) of around 1.1 K, which is thought to be due to the shift in the spectral response function. The shortwave channel shows a maximum RMSD of around 1.39 K, mainly due to the coarse digitization at the lower temperature. The inter-comparison results are re-checked through a sensitivity analysis with different sets of threshold values used for the matchup dataset. Based on this, we confirm that the overall quality of the MI data meets the user requirements and maintains the expected performance, although the water vapor channel requires further investigation.
基金National Nature Science Foundation(Nos.41971425,41601505)Special Fund for High Resolution Images Surveying and Mapping Application System(No.42-Y30B04-9001-19/21)。
文摘The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.
文摘Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morphology is to use construction ele- ment measure image morphology for solving understand problem.The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter.It gave the theo- ries of MMCNN dynamic extent and stable state.It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.
文摘Palm vein hidden under the skin and its distribution feature is hard to be stolen, which makes the palm vein recognition to be a high security biometric authentication method. Contact-less palm vein imaging can avoid the spread of disease, thus expanding the application range of palm vein biometric authentication devices. However, due to the different un-derstanding of the right imaging position and the change of fingers open degree, contact-less palm vein image acquisi-tion led to a certain degree of translation, rotation, scaling and shear, that is, the image deformation. Image deformation causes the imaging feature unstable. In this paper, the effect of image deformation to the stability of palm vein features is studied by some similarity parameters. First, feature points in the palm were marked, contact-less imaging and con-tact imaging of palm vein were acquired. Then, this paper calculated the similarity parameters of the contact-less imag-ing to contact imaging and gave corresponding analysis. Experimental results show that contact-less palm vein imagingwas stable, and derived the linear regression equation of relationship between sample space and the recognition rate: y =?0.000903x + 1.0332, coefficient of determination R2 = 0.9824. This research provided effective and detailed data to the study of contact-less palm vein recognition and gave powerful support to contact-less multi-feature fusion recogni-tion based on hand.
基金Project(41174102)supported by the National Natural Science Foundation of China
文摘In order to improve the exploration effect of deep non-ferrous mineral resources, multi-channel observation methods for induced polarization (IP) electrical sounding data and their inversion imaging technology are studied. First of all, four multi-channel observation methods are developed based on conventional IP electrical method, namely three-electrode and four-electrode arrays of unilateral and bilateral current transmitting. Then the maximum smoothness constrained inversion method of the least squares sense for IP electrical sounding data is proposed, and the inversion software is programmed. Finally, the simulation and inversion results of geo-electrical model for the proposed observation methods are analyzed. And the comparison results show that three-electrode array of bilateral current transmitting gives the best result, but the intensity in field work is larger than others; unilateral three-electrode and four-electrode arrays give the better results. Taking detection results and convenience of field exploration work into consideration, these two methods are more suitable for practical application; bilateral observation method of four-electrode array is not suitable for the detection of the steep ore bodies.
文摘Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic, chromium, lead, manganese and nickel. For this, scrap tires are used as light- weight alternative materials in many engineering applications, such as retaining wall backfilling. In the present study, 90 laboratory models were prepared to evaluate the stability of mechanically stabilized earth (MSE) walls with plate anchors. Then, the bearing capacity and horizontal displacements of the retaining walls were monitored by exerting a static loading to investigate the effects of adding different contents (5 wt%, 10 wt%, 15 wt% and 20 wt%) of recycled crumb rubber (RCR) to the fill of a mechanically stabilized retaining wall with plate anchors. To visualize the critical slip surface of the wall, the particle image velocimetry (PIV) technique was employed. Results showed that the circular anchor plates almost continually provided a higher bearing capacity and wall stability than the square plates. Moreover, the backfill with 15 wt% RCR provided the maximum bearing capacity of the wall. Increasing the weight percentage of RCR to 20 wt% resulted in a significant reduction in horizontal displacement of the wall, which occurred due to the decrease in lateral earth pressure against the whole walls. An increase in RCR content resulted in the decrease in the formation of failure wedge and the expansion of the wall slip surface, and the failure wedge did not form in the sand mixtures with 15 wt% and 20 wt% RCRs.
基金supported by National Natural Science Foundation of China(61473134,61573220)the Postdoctoral Science Foundation of China(2017M622231)
文摘This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation technique and the linear unbiased estimation method. The estimation gains are developed by solving a set of Riccati equations, and a stability result about the state estimation is shown. Finally, an example is given to illustrate the efficiency of the receding horizon state estimation.
基金Supported by the National Natural Science Foundation of China(61233014)the China Postdoctoral Science Foundation(2012M5210711,20123218110031)the National Natural Science Major International Cooperation Projects(61161120323)
文摘Inspired by the unique structure of insect compound eyes,a multi-channel image acquisition system is designed to photograph a cylindrical panorama of its surroundings with one shot. The hardware structure consists of an embedded ARM system and one array of 16 micro-image sensors. The system achieves the synchronization of captured photos in 10 ms,as well as 10 f /s video capture. The software architecture includes the TCP /IP protocol,video capture procedures in"Poll/Read"or"video streaming"modes,thread pool monitoring in multi-threading mutex,synchronization control with the"event""mutex signal"and"critical region"functions,and a synthetic image algorithm characterized by its portability,modularity,and remote transmission. The panoramic imaging system is expected to be a vision sensor for mobile robotics.