Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexi...A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.展开更多
Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for...Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.展开更多
Sorption recovery of palladium (II) from nitrate weak acidic model solutions and solutions of spent catalysts on some ion exchangers with different physical and chemical structure has been investigated. The palladium ...Sorption recovery of palladium (II) from nitrate weak acidic model solutions and solutions of spent catalysts on some ion exchangers with different physical and chemical structure has been investigated. The palladium concentration in contacting solutions was 5.0 ? 10-5 – 1.0 ? 10-3 mol/L at nitric acid and potassium nitrate con-centrations 0.01 and 1.0 mol/L, respectively. It was shown that anion exchangers AV-17-8 as well as Purolite S 985 and A 500 possess the best sorption and kinetic properties. These sorbents can be recommended for selective recovery of palladium from solutions of spent catalysts.展开更多
The UV spectra of sodium aluminate solutions were obtained in the sodium oxide concentration range from 59 to 409 g/L and the caustic ratio range from 1.5 to 4.0 to reveal the structure characteristics of them. It is ...The UV spectra of sodium aluminate solutions were obtained in the sodium oxide concentration range from 59 to 409 g/L and the caustic ratio range from 1.5 to 4.0 to reveal the structure characteristics of them. It is found that a new peak appears at about 370 nm besides peaks at about 220 and 266 nm in all solutions. The new peak is strongly favored by high hydroxide concentration and high caustic ratio. And it only appears when the solutions are prepared by dissolving sodium hydroxide and aluminum hydroxide. In addition, the IR and Raman spectra of sodium aluminate solutions with high alkali concentration and high caustic ratio were measured, and the UV spectra of aqueous solutions of Al( H2O )36+and AlF 36?were measured as well. According to the crystal field theory in coordination chemistry as well as the above spectra characteristics, this new peak at about 370 nm is determined as the evidence of a new species of aluminate ion with a coordination number of 6.展开更多
Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission...Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.展开更多
By using the theory of planar dynamical systems to the ion acoustic plasma equations, we obtain the existence of the solutions of the smooth and non-smooth solitary waves and the uncountably infinite smooth and non-sm...By using the theory of planar dynamical systems to the ion acoustic plasma equations, we obtain the existence of the solutions of the smooth and non-smooth solitary waves and the uncountably infinite smooth and non-smooth periodic waves. Under the given parametric conditions, we present the sufficient conditions to guarantee the existence of the above solutions.展开更多
Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltra...Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster.The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations(1-alkyl-3-methylimidazolium chloride: [C6 mim]Cl, [C8 mim]Cl, [C10 mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.展开更多
Ion mobility in solid solutions of the fluorite structure 50Pb2–30BiF3–20KF (I) and 50Pb2–30BiF3–20NaF (II) was studied by NMR method. Analysis of 19F, 23Na NMR spectra made it possible to reveal the character of ...Ion mobility in solid solutions of the fluorite structure 50Pb2–30BiF3–20KF (I) and 50Pb2–30BiF3–20NaF (II) was studied by NMR method. Analysis of 19F, 23Na NMR spectra made it possible to reveal the character of ion motions in the fluoride and sodium sublattices with temperature variation, to determine the types and temperature ranges in which they took place. It was found that the dominant form of ionic mobility in the samples I and II above 380 K was the diffusion of fluoride and sodium ions. According to preliminary results of electro-physical studies, the conductivity reached values of ~ 2×10–2 – 10–3 S/cm above 500 K. The solid solutions I and II can be recommended as a basis for use in the development of new functional materials.展开更多
The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pai...The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation.展开更多
We utilize molecular dynamics simulations to investigate the microstructures of ions and polyelectrolytes in aqueous solutions under external electric fields.By focusing on the multi-body interactions between ionic co...We utilize molecular dynamics simulations to investigate the microstructures of ions and polyelectrolytes in aqueous solutions under external electric fields.By focusing on the multi-body interactions between ionic components and H_(2)O molecules,as well as their responses to the external electric fields,we clarify several nontrivial molecular features of the ionic and polyelectrolyte solutions,such as the solvations of cations and anions,clustering of the ions,and dispersions/aggregations of polyelectrolyte chains,as well as the corresponding responses of H_(2)O molecules in these contexts.Our simulations illustrate the variations in structures of ionic solutions caused by reversing the charge sign of the ions,and elucidate the disparity in structures between anionic and cationic polyelectrolyte solutions in the presence of the external electric fields.This work clarifies the mechanism for the alternations in complex multi-body interactions in aqueous solutions caused by the application electric field,which can contribute to the fundamental understanding of the physical and chemical natures of ion-containing and charged polymeric systems.展开更多
The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorpti...The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.展开更多
Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated ...Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl 3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl 3 solution is about 25~30 g/L.展开更多
Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated...Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.展开更多
Raffinate copper leach solution of the Iran Sarcheshmeh copper complex has up to 3 mg/L scandium(Sc),which is significantly better than many existing sources,making it a possible source for the recovery of Sc using th...Raffinate copper leach solution of the Iran Sarcheshmeh copper complex has up to 3 mg/L scandium(Sc),which is significantly better than many existing sources,making it a possible source for the recovery of Sc using the ion exchange method.Visual Minteq software was employed to ascertain the ionic species likely to be formed under operational conditions in the mine and for selecting the suitable ion exchange resin.The cationic resin thus chosen was employed statically with ions-bearing synthesized solutions and statically/dynamically for actual copper mining raffinate solution.Room temperature and pH of 1.5 showed the highest Sc adsorption.The dynamic tests established the full saturation of the resin at 450 BV of the raffinate solution flow.Using sodium carbonate for elution,desorption of Sc,Y and Ce from the resin during static elution tests at constant duration was higher than that of Fe,Al and Cu.The results from the dynamic tests followed similar trends for the priority and the extent of the elution process.Desorption results from specimens of dynamic tests show a 60:1 concentration ratio leading to a 186 mg/L Sc-rich solution.展开更多
Sulfides in the high-sulfur bauxite lead to serious steel equipment corrosion and alumina product degradation via theBayer process,owing to the reactions of sulfur and iron-containing phases in the sodium aluminate so...Sulfides in the high-sulfur bauxite lead to serious steel equipment corrosion and alumina product degradation via theBayer process,owing to the reactions of sulfur and iron-containing phases in the sodium aluminate solution.The effects ofiron-containing phases on the transformation of sulfur-bearing ions(S2?,223S O?,23SO?and24SO?)in sodium aluminate solutionwere investigated.Fe,Fe2O3and Fe3O4barely react with23SO?and24SO?,but all of them,particularly Fe,can promote theconversion of223S O?to23SO?and S2?in sodium aluminate solution.Fe can convert to3Fe(OH)?in solution at elevatedtemperatures,and further react with S2?to form FeS2,but Fe2O3and Fe3O4have little influence on the reaction behavior of S2?insodium aluminate solution.Increasing temperature,duration,dosage of Fe,mole ratio of Na2Ok to Al2O3and caustic sodaconcentration are beneficial to the transformation of223S O?to23SO?and S2?.The results may contribute to the development oftechnologies for alleviating the equipment corrosion and reducing caustic consumption during the high-sulfur bauxite treatment bythe Bayer process.展开更多
Membrane/solution interface consists of a neutral concentration polai layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. T...Membrane/solution interface consists of a neutral concentration polai layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. The relationship of CL thickness e with electrolyte concentration C and fixed ion exchange sites density σ in membrane surface layer can be expressed as e展开更多
A method of solving an ultracold trapped ion at the node of the standing wave laser without rotating wave approximation is proposed and the analytical forms of the eigenfunctions and eigenenergies of the system are pr...A method of solving an ultracold trapped ion at the node of the standing wave laser without rotating wave approximation is proposed and the analytical forms of the eigenfunctions and eigenenergies of the system are presented.展开更多
The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion...The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion removal. The equilibrium isotherm study showed that the maximum monolayer coverage on the biomass surface was 0.933 mg·g-1 and 0.874 mg·g-1 for Mn2+ and Cr3+ ions respectively. The highest percentage of Cr3+ and Mn2+ ions adsorbed by the biomass was 86.4% and 82.6% at the optimum pH of 4.0 and 6.0 respectively. The results also showed that the highest percentage removal 82.5% and 78.3% was obtained at 30 and 20 minutes respectively for Cr3+ and Mn2+ ions. The sorption process was examined by means of the Langmuir model. The adsorption equilibrium data were found to follow the Langmuir isotherm model with high coefficients of determination (R2 = 0.990 and 0.999) for Cr+ and Mn2+ ions respectively. The adsorption capacity of water hyacinth showed that water hyacinth will be useful in recovering chromium (III) and manganese (II) ions from solution and their subsequent removal from industrial effluents.展开更多
Pure, and Europium ion doped Zinc oxide nanocrystals (ZnO:Eu3+) were synthesized by a solution combustion technique. The X-ray diffraction patterns (XRD) reveals the existence of the Eu2O3 phase. From the results of b...Pure, and Europium ion doped Zinc oxide nanocrystals (ZnO:Eu3+) were synthesized by a solution combustion technique. The X-ray diffraction patterns (XRD) reveals the existence of the Eu2O3 phase. From the results of both, X-ray diffraction and photoluminescence spectra (PL) reveal that Eu3+ ions successfully substitute for Zn2+ ions in the ZnO lattice, moreover, when the amount of doped Europium was varied, this changes are showed in changes in the luminescence intensity. The PL is broad and a set of colors was emitted which originates from ZnO and the intra 4f transitions of Eu3+ ions. The existence of the Zn-O, Eu3+-O and O1s bonding energies were confirmed by X-ray photoelectron spectroscopy (XPS) technique. The samples morphology was registered by a scanning electron microscopy (SEM) technique, and reveals that Europium ions are present on the surface of the ZnO nanocrystals.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.
文摘Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.
文摘Sorption recovery of palladium (II) from nitrate weak acidic model solutions and solutions of spent catalysts on some ion exchangers with different physical and chemical structure has been investigated. The palladium concentration in contacting solutions was 5.0 ? 10-5 – 1.0 ? 10-3 mol/L at nitric acid and potassium nitrate con-centrations 0.01 and 1.0 mol/L, respectively. It was shown that anion exchangers AV-17-8 as well as Purolite S 985 and A 500 possess the best sorption and kinetic properties. These sorbents can be recommended for selective recovery of palladium from solutions of spent catalysts.
基金Project(50234040) supported by the Key Project of the National Natural Science Foundation of ChinaProject(2005AA647010) supported by the National High-Tech Research and Development Program of China
文摘The UV spectra of sodium aluminate solutions were obtained in the sodium oxide concentration range from 59 to 409 g/L and the caustic ratio range from 1.5 to 4.0 to reveal the structure characteristics of them. It is found that a new peak appears at about 370 nm besides peaks at about 220 and 266 nm in all solutions. The new peak is strongly favored by high hydroxide concentration and high caustic ratio. And it only appears when the solutions are prepared by dissolving sodium hydroxide and aluminum hydroxide. In addition, the IR and Raman spectra of sodium aluminate solutions with high alkali concentration and high caustic ratio were measured, and the UV spectra of aqueous solutions of Al( H2O )36+and AlF 36?were measured as well. According to the crystal field theory in coordination chemistry as well as the above spectra characteristics, this new peak at about 370 nm is determined as the evidence of a new species of aluminate ion with a coordination number of 6.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12005031 and 12275041)the Natural Science Fund from the Interdisciplinary Project of Dalian University(Grant No.DLUXK-2023-QN-001)。
文摘Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
基金supported by the National Natural Science Foundation of China (No. 10971085)
文摘By using the theory of planar dynamical systems to the ion acoustic plasma equations, we obtain the existence of the solutions of the smooth and non-smooth solitary waves and the uncountably infinite smooth and non-smooth periodic waves. Under the given parametric conditions, we present the sufficient conditions to guarantee the existence of the above solutions.
基金financially supported by National Key Research and Develop Program of China (2017YFA0206803)National Science Fund for Excellent Young Scholars (21722610)+2 种基金National Natural Science Foundation of China (21676277)Key Program of National Natural Science Foundation of China (91434203)CAS-SAFEA International PartnershipProgramforCreativeResearchTeams (20140491518)
文摘Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster.The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations(1-alkyl-3-methylimidazolium chloride: [C6 mim]Cl, [C8 mim]Cl, [C10 mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.
文摘Ion mobility in solid solutions of the fluorite structure 50Pb2–30BiF3–20KF (I) and 50Pb2–30BiF3–20NaF (II) was studied by NMR method. Analysis of 19F, 23Na NMR spectra made it possible to reveal the character of ion motions in the fluoride and sodium sublattices with temperature variation, to determine the types and temperature ranges in which they took place. It was found that the dominant form of ionic mobility in the samples I and II above 380 K was the diffusion of fluoride and sodium ions. According to preliminary results of electro-physical studies, the conductivity reached values of ~ 2×10–2 – 10–3 S/cm above 500 K. The solid solutions I and II can be recommended as a basis for use in the development of new functional materials.
基金Project(51274242)supported by the National Natural Science Foundation of China
文摘The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation.
基金supported by the Major Science and Technology Projects for Independent Innovation of China FAW Group Co., Ltd. (No. 20220301018GX)the National Natural Science Foundation of China (Nos. 9237210012, 22073094 and 21474109)+2 种基金the Science and Technology Development Program of Jilin Province (Nos. 20240602003RC and 20210402059GH)the State Key Laboratory of Molecular Engineering of Polymers (Fudan University) (No. K2023-08)the Program for Young Scholars in Regional Development of CAS
文摘We utilize molecular dynamics simulations to investigate the microstructures of ions and polyelectrolytes in aqueous solutions under external electric fields.By focusing on the multi-body interactions between ionic components and H_(2)O molecules,as well as their responses to the external electric fields,we clarify several nontrivial molecular features of the ionic and polyelectrolyte solutions,such as the solvations of cations and anions,clustering of the ions,and dispersions/aggregations of polyelectrolyte chains,as well as the corresponding responses of H_(2)O molecules in these contexts.Our simulations illustrate the variations in structures of ionic solutions caused by reversing the charge sign of the ions,and elucidate the disparity in structures between anionic and cationic polyelectrolyte solutions in the presence of the external electric fields.This work clarifies the mechanism for the alternations in complex multi-body interactions in aqueous solutions caused by the application electric field,which can contribute to the fundamental understanding of the physical and chemical natures of ion-containing and charged polymeric systems.
基金Projects(21376251,21406233) supported by the National Natural Science Foundation of China
文摘The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.
文摘Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl 3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl 3 solution is about 25~30 g/L.
基金Project(2015BAB04B01)supported by the National Key Technology R&D Program of ChinaProject(FA2017029)supported by Science and Technology Program of Chongzuo,ChinaProject(CSUZC201811)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.
文摘Raffinate copper leach solution of the Iran Sarcheshmeh copper complex has up to 3 mg/L scandium(Sc),which is significantly better than many existing sources,making it a possible source for the recovery of Sc using the ion exchange method.Visual Minteq software was employed to ascertain the ionic species likely to be formed under operational conditions in the mine and for selecting the suitable ion exchange resin.The cationic resin thus chosen was employed statically with ions-bearing synthesized solutions and statically/dynamically for actual copper mining raffinate solution.Room temperature and pH of 1.5 showed the highest Sc adsorption.The dynamic tests established the full saturation of the resin at 450 BV of the raffinate solution flow.Using sodium carbonate for elution,desorption of Sc,Y and Ce from the resin during static elution tests at constant duration was higher than that of Fe,Al and Cu.The results from the dynamic tests followed similar trends for the priority and the extent of the elution process.Desorption results from specimens of dynamic tests show a 60:1 concentration ratio leading to a 186 mg/L Sc-rich solution.
基金Project(51604309)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare IndustryProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘Sulfides in the high-sulfur bauxite lead to serious steel equipment corrosion and alumina product degradation via theBayer process,owing to the reactions of sulfur and iron-containing phases in the sodium aluminate solution.The effects ofiron-containing phases on the transformation of sulfur-bearing ions(S2?,223S O?,23SO?and24SO?)in sodium aluminate solutionwere investigated.Fe,Fe2O3and Fe3O4barely react with23SO?and24SO?,but all of them,particularly Fe,can promote theconversion of223S O?to23SO?and S2?in sodium aluminate solution.Fe can convert to3Fe(OH)?in solution at elevatedtemperatures,and further react with S2?to form FeS2,but Fe2O3and Fe3O4have little influence on the reaction behavior of S2?insodium aluminate solution.Increasing temperature,duration,dosage of Fe,mole ratio of Na2Ok to Al2O3and caustic sodaconcentration are beneficial to the transformation of223S O?to23SO?and S2?.The results may contribute to the development oftechnologies for alleviating the equipment corrosion and reducing caustic consumption during the high-sulfur bauxite treatment bythe Bayer process.
基金Project(02-09-01) supported by Panzhihua Iron and Steel Corporation,China
文摘Membrane/solution interface consists of a neutral concentration polai layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. The relationship of CL thickness e with electrolyte concentration C and fixed ion exchange sites density σ in membrane surface layer can be expressed as e
文摘A method of solving an ultracold trapped ion at the node of the standing wave laser without rotating wave approximation is proposed and the analytical forms of the eigenfunctions and eigenenergies of the system are presented.
文摘The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion removal. The equilibrium isotherm study showed that the maximum monolayer coverage on the biomass surface was 0.933 mg·g-1 and 0.874 mg·g-1 for Mn2+ and Cr3+ ions respectively. The highest percentage of Cr3+ and Mn2+ ions adsorbed by the biomass was 86.4% and 82.6% at the optimum pH of 4.0 and 6.0 respectively. The results also showed that the highest percentage removal 82.5% and 78.3% was obtained at 30 and 20 minutes respectively for Cr3+ and Mn2+ ions. The sorption process was examined by means of the Langmuir model. The adsorption equilibrium data were found to follow the Langmuir isotherm model with high coefficients of determination (R2 = 0.990 and 0.999) for Cr+ and Mn2+ ions respectively. The adsorption capacity of water hyacinth showed that water hyacinth will be useful in recovering chromium (III) and manganese (II) ions from solution and their subsequent removal from industrial effluents.
文摘Pure, and Europium ion doped Zinc oxide nanocrystals (ZnO:Eu3+) were synthesized by a solution combustion technique. The X-ray diffraction patterns (XRD) reveals the existence of the Eu2O3 phase. From the results of both, X-ray diffraction and photoluminescence spectra (PL) reveal that Eu3+ ions successfully substitute for Zn2+ ions in the ZnO lattice, moreover, when the amount of doped Europium was varied, this changes are showed in changes in the luminescence intensity. The PL is broad and a set of colors was emitted which originates from ZnO and the intra 4f transitions of Eu3+ ions. The existence of the Zn-O, Eu3+-O and O1s bonding energies were confirmed by X-ray photoelectron spectroscopy (XPS) technique. The samples morphology was registered by a scanning electron microscopy (SEM) technique, and reveals that Europium ions are present on the surface of the ZnO nanocrystals.