This paper reports the application of multi-component hydrocracking catalyst grading technology in diesel hydrocracking system to increase naphtha,and studies the influence of catalyst systems with different number of...This paper reports the application of multi-component hydrocracking catalyst grading technology in diesel hydrocracking system to increase naphtha,and studies the influence of catalyst systems with different number of graded beds on the reaction process of diesel hydrocracking.Three hydrocracking catalysts with different physicochemical properties as gradation components,the diesel hydrocracking reaction on catalyst systems of one-component,two-component and three-component graded beds with different loading sequences are carried out and evaluated,respectively.The catalytic mechanism of the multi-component grading system is analyzed.The results show that,with the increase of the number of grading beds,the space velocity of reaction on each catalyst increases,which can effectively control the overreaction process;along the flow direction of feedstock,the loading sequences of catalysts with acidity decreasing and pore properties increasing can satisfy the demand of different catalytic activity for the conversion of reactant with changing composition to naphtha,which has a guiding role in the conversion of feedstock to target products.Therefore,the conversion of diesel,the selectivity and yield of naphtha all increase significantly on the multi-component catalyst system.The research on the grading technology of multi-component catalysts is of great significance to the promotion and application of catalyst systems in various catalytic fields.展开更多
A novel and efficient route for the synthesis of 1,8-dioxooctahydroxanthenes and 14-aryl-14H-dibenzo[a,j]xanthenes is described through one-pot multi-component reaction of dimedone and 2-naphthol with various aryl ald...A novel and efficient route for the synthesis of 1,8-dioxooctahydroxanthenes and 14-aryl-14H-dibenzo[a,j]xanthenes is described through one-pot multi-component reaction of dimedone and 2-naphthol with various aryl aldehydes using ZnO nanoparticles under solvent-free conditions. This method provides a novel and improved pathway for the synthesis of xanthenes in the terms of excellent yields, short reaction times, reusability and low catalyst loading.展开更多
Carbon supported PdCl_2 is highly active in catalyzing acetylene hydrochlorination reaction, but deactivates rather quickly. Upon nitrogen doping in the carbon structure, the stability of the PdCl_2 catalysts is signi...Carbon supported PdCl_2 is highly active in catalyzing acetylene hydrochlorination reaction, but deactivates rather quickly. Upon nitrogen doping in the carbon structure, the stability of the PdCl_2 catalysts is significantly improved. Furthermore, the results show that 900 ℃ is a preferred doping temperature. The acetylene conversion keeps above 90% even after 1200 min time on stream whereas the one without nitrogen doping drops to below 10% after 450 min. The stabilizing mechanism of nitrogen doping on catalyst was studied.展开更多
An efficient green protocol is described for the preparation of highly functionalized piperidines via a one-pot five-component reaction between aromatic aldehydes,anilines andβ-ketoesters in the presence of oxalic ac...An efficient green protocol is described for the preparation of highly functionalized piperidines via a one-pot five-component reaction between aromatic aldehydes,anilines andβ-ketoesters in the presence of oxalic acid dihydrate as catalyst in ethanol at ambient temperature.The structure as well as the relative stereochemistry of these compounds was confirmed by single X-ray crystallographic analysis.展开更多
基金National Key R&D Program of China(2021YFA1501203)is acknowledged for financial support.
文摘This paper reports the application of multi-component hydrocracking catalyst grading technology in diesel hydrocracking system to increase naphtha,and studies the influence of catalyst systems with different number of graded beds on the reaction process of diesel hydrocracking.Three hydrocracking catalysts with different physicochemical properties as gradation components,the diesel hydrocracking reaction on catalyst systems of one-component,two-component and three-component graded beds with different loading sequences are carried out and evaluated,respectively.The catalytic mechanism of the multi-component grading system is analyzed.The results show that,with the increase of the number of grading beds,the space velocity of reaction on each catalyst increases,which can effectively control the overreaction process;along the flow direction of feedstock,the loading sequences of catalysts with acidity decreasing and pore properties increasing can satisfy the demand of different catalytic activity for the conversion of reactant with changing composition to naphtha,which has a guiding role in the conversion of feedstock to target products.Therefore,the conversion of diesel,the selectivity and yield of naphtha all increase significantly on the multi-component catalyst system.The research on the grading technology of multi-component catalysts is of great significance to the promotion and application of catalyst systems in various catalytic fields.
基金University of Kashan for supporting this work by Grant 159196/ⅦIran National Science Foundation for supporting this work
文摘A novel and efficient route for the synthesis of 1,8-dioxooctahydroxanthenes and 14-aryl-14H-dibenzo[a,j]xanthenes is described through one-pot multi-component reaction of dimedone and 2-naphthol with various aryl aldehydes using ZnO nanoparticles under solvent-free conditions. This method provides a novel and improved pathway for the synthesis of xanthenes in the terms of excellent yields, short reaction times, reusability and low catalyst loading.
基金supported by the National Science Foundation of China(21425312,21373207,21321002)
文摘Carbon supported PdCl_2 is highly active in catalyzing acetylene hydrochlorination reaction, but deactivates rather quickly. Upon nitrogen doping in the carbon structure, the stability of the PdCl_2 catalysts is significantly improved. Furthermore, the results show that 900 ℃ is a preferred doping temperature. The acetylene conversion keeps above 90% even after 1200 min time on stream whereas the one without nitrogen doping drops to below 10% after 450 min. The stabilizing mechanism of nitrogen doping on catalyst was studied.
基金support from the Research Council of the University of Sistan and Baluchestanthe Australian National University
文摘An efficient green protocol is described for the preparation of highly functionalized piperidines via a one-pot five-component reaction between aromatic aldehydes,anilines andβ-ketoesters in the presence of oxalic acid dihydrate as catalyst in ethanol at ambient temperature.The structure as well as the relative stereochemistry of these compounds was confirmed by single X-ray crystallographic analysis.