A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including differe...A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including different coil structures,varies.In this study,two planar eddy current probes with differential pickup structures and the same size,Koch and circular probes,were used to compare lift-off effects.The eddy current distributions of the probes perturbed by 0°and 90°cracks were obtained by finite element analysis.The analysis results show that the 90°crack can impede the eddy current induced by the Koch probe even further at relatively low lift-off distance.The peak-to-peak values of the signal output from the two probes were compared at different lift-off distances using finite element analysis and experimental methods.In addition,the effects of different frequencies on the lift-off were studied experimentally.The results show that the signal peak-to-peak value of the Koch probe for the inspection of cracks in 90°orientation is larger than that of the circular probe when the lift-off distance is smaller than 1.2 mm.In addition,the influence of the lift-off distance on the peak-to-peak signal value of the two probes was studied via normalization.This indicates that the influence becomes more evident with an increase in excitation frequency.This research discloses the lift-off effect of differential planar eddy current probes with different coil shapes and proves the detection merit of the Koch probe for 90°cracks at low lift-off distances.展开更多
Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affec...Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.展开更多
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue,thus as important tools for brain science research,as well as diagnosis and treatment of brain diseases.However,...Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue,thus as important tools for brain science research,as well as diagnosis and treatment of brain diseases.However,the rigid neural probes,such as Utah arrays,Michigan probes,and metal microfilament electrodes,are mechanically unmatched with brain tissue and are prone to rejection and glial scarring after implantation,which leads to a significant degradation in the signal quality with the implantation time.In recent years,flexible neural electrodes are rapidly developed with less damage to biological tissues,excellent biocompatibility,and mechanical compliance to alleviate scarring.Among them,the mechanical modeling is important for the optimization of the structure and the implantation process.In this review,the theoretical calculation of the flexible neural probes is firstly summarized with the processes of buckling,insertion,and relative interaction with soft brain tissue for flexible probes from outside to inside.Then,the corresponding mechanical simulation methods are organized considering multiple impact factors to realize minimally invasive implantation.Finally,the technical difficulties and future trends of mechanical modeling are discussed for the next-generation flexible neural probes,which is critical to realize low-invasiveness and long-term coexistence in vivo.展开更多
Exploring plant behavior at the cellular scale in a minimally invasive manner is critical to understanding plant adaptation to the environment.Phytohormones play vital regulatory roles in multiple aspects of plant gro...Exploring plant behavior at the cellular scale in a minimally invasive manner is critical to understanding plant adaptation to the environment.Phytohormones play vital regulatory roles in multiple aspects of plant growth and development and acclimation to environmental changes.Since the biosynthesis,modification,transportation,and degradation of plant hormones in plants change with time and space,their content level and distribution are highly dynamic.To monitor the production,transport,perception,and distribution of phytohormones within undamaged tissues,we require qualitative and quantitative tools endowed with remarkably high temporal and spatial resolution.Fluorescent probes are regarded as excellent tools for widespread plant imaging because of their high sensitivity and selectivity,reproducibility,real-time in situ detection,and uncomplicated mechanism elucidation.In this review,we provide a systematical overview of the progress in the sensing and imaging of phytohormone fluorescent probes and fluorescently labeled phytohormones to their receptors in plants.Moreover,forthcoming viewpoints and possible applications of these fluorescent probes within the realm of plants are also presented.We hold the conviction that the new perspective brought by this paper can promote the development of fluorescent probes,enabling them to have better detection performance in plant hormone imaging.展开更多
Pyroptosis is a newly identified form of regulated cell death driven by pathogen-associated molecular patterns(PAMPs),environment-or host-derived damage-associated molecular patterns(DAMPs),gram-negative bacteria,and ...Pyroptosis is a newly identified form of regulated cell death driven by pathogen-associated molecular patterns(PAMPs),environment-or host-derived damage-associated molecular patterns(DAMPs),gram-negative bacteria,and chemotherapy drugs.Emerging evidence shows the potential of pyroptosis for biosensor development and cancer therapy,particularly for treating cancers resistant to traditional therapies.However,the published pyroptosis reviews mainly focused on multiple pyroptosis mechanisms and pathways.Therefore,it is timely to summarize the application of pyroptosis-based fluorescent probes highlighted by their detection capabilities and sensitivity as well as promising pyroptosis-inducing agents(including small molecules and nanomaterials)for cancer therapy.In this review,we comprehensively reviewed the current strategies for both probes and inducers to diagnosis or fight against cancers based on pyroptosis.We also highlighted the advantages of their strategies of design,mechanism,and application and provided new insights to overcome their challenges.展开更多
A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance ti...A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.展开更多
The expression of mutual impedance between two probes in a circular waveguide is derived by means of a vector potential function, reaction concept and reciprocity theorem. The waveguide is semi-infinite, and one end o...The expression of mutual impedance between two probes in a circular waveguide is derived by means of a vector potential function, reaction concept and reciprocity theorem. The waveguide is semi-infinite, and one end of the waveguide is terminated to a load with a reflection coefficient. The contribution to the mutual resistance is found to come from the dominant mode, while the contribution to the mutual reactance comes from the dominant mode and the higher order modes. The major contribution to the mutual reactance is from the dominant mode, since the higher modes decay rapidly with the increasing the probes’ of separation distance. However, as the separation distance approaches zero, the higher modes become dominant, which results in a large value of the mutual reactance. The mutual impedance is dependent on the location and height of the probes, their separation distance and the location of the terminal plane.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is m...Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is more useful for seismic exploration. However, traditional AVO analysis is based on the Zoeppritz equation, which only contains single-interface information. Quantitative interpretation of the thin bed thickness is essential to thin bed structure interpretation, reservoir description, and lateral reservoir prediction. The reflectance spectrum equation based on the elastic wave propagation matrix in the frequency domain derived in this paper shows that both interfaces and intervals have an effect on amplitude. The equation includes information about both single interfaces and volume scattering. Since the reflectance spectrum equation is a continuous function of thin bed thickness and frequency, it is convenient to analyze the effects of a single frequency and bed thickness on the reflectance spectrum. Bed thickness is analyzable until the bed thickness is vanishingly small. These characteristics can't be achieved by Fourier transform. The propagation of seismic waves is complex and various wave modes exist simultaneously. The reflectance spectrum includes various propagating wave modes and multiples and is better for simulating multi-component thin bed AVO responses than the ray tracing method.展开更多
Dot-blot hybridization was applied in this paper to detect five viruses infecting cucurbitaceous crops, Zuccini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Papaya ring...Dot-blot hybridization was applied in this paper to detect five viruses infecting cucurbitaceous crops, Zuccini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Papaya ringspot viruswatermelon strain (PRSV-W) and Squash mosaic virus (SqMV), as a good alternative assay in seed health test and epidemiological and transgenic research. Digoxigenin-labelled cDNA probes of the five viruses were synthesized by PCR with the specific primers and applied in dot-blot hybridization to detect five viruses in crude extraction of the infected leaves. And three SqMV probes of different lengths (0.55, 1.6, and 2.7 kb, respectively) were designed to investigate the effect of hybridization. The results showed that the sensitivity for detecting the crude extraction of infected leaves by ZYMV, WMV, CMV, PRSV-W, and SqMV was down to 1:160, 1:160, 1:320, 1:160, and 1:320, respectively. Three SqMV probes of different length showed no differences on the sensitivity and specificity. The digoxigenin-labelled probes prepared by PCR could be used for accurate and rapid identification of 5 viruses infecting cucurbitaceous crops with good stabilities, sensitivities, specificity, and reproducibilifies.展开更多
Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe cons...Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.展开更多
Two different entry vehicles are presented here: the Inflatable Reentry and Descent Demonstrator (IRDT), and Huygens. Both missions involve (re)entries at conditions close to orbital, and have been performed in 2...Two different entry vehicles are presented here: the Inflatable Reentry and Descent Demonstrator (IRDT), and Huygens. Both missions involve (re)entries at conditions close to orbital, and have been performed in 2005. Specific aspects of the design and the mission of IRDT are briefly outlined. The preliminary results of the recent flight of IRDT and the methodology followed at ESTEC for the assessment of radiative fluxes for Huygens are summarised.展开更多
AIM: To develop a simplified and efficient method for the preparation of hepatitis C virus (HCV) cDNA microarray probes.METHODS: With the technique of restriction display PCR (RD-PCR), restriction enzyme Sau3A I was c...AIM: To develop a simplified and efficient method for the preparation of hepatitis C virus (HCV) cDNA microarray probes.METHODS: With the technique of restriction display PCR (RD-PCR), restriction enzyme Sau3A I was chosen to digest the full-length HCV cDNAs. The products were classified and re-amplified by RD-PCR. We separated the differential genes by polyacrylamide gel electrophoresis and silver staining. Single bands cut out from the polyacrylamide gel were isolated. The third-round PCR was performed using the single bands as PCR template.The RD-PCR fragments were purified and cloned into the pMD18-T vector. The recombinant plasmids were extracted from positive clones, and the target gene fragments were sequenced. The cDNA microarray was prepared by spotting RD-PCR products to the surface of amino-modified glass slides using a robot. We validated the detection of microarray by hybridization and sequence analysis.RESULTS: A total of 24 different cDNA fragments ranging from 200 to 800 bp were isolated and sequenced,which were the specific gene fragments of HCV. These fragments could be further used as probes in microarray preparation. The diagnostic capability of the microarray was evaluated after the washing and scanning steps. The results of hybridization and sequence analysis showed that the specificity, sensitivity, accuracy, reproducibility,and linearity in detecting HCV RNA were satisfactory.CONCLUSION: The RD-PCR technique is of great value in obtaining a large number of size-comparable gene probes, which provides a speedy protocol in generating probes for the preparation of microarrays. Microarray prepared as such could be further optimized and applied in the clinical diagnosis of HCV.展开更多
To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainabili...To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.展开更多
Parameters of hydrogen plasma in a miniature Penning discharge ion source, including the electron temperature and the electron density, were measured by using double probes. The results indicate that the electron dens...Parameters of hydrogen plasma in a miniature Penning discharge ion source, including the electron temperature and the electron density, were measured by using double probes. The results indicate that the electron density increases and the electron temperature decreases with the increase in gas pressure and the discharge current. The electron temperature is about 5 - 9 eV and the electron density is 6.0× 10^13 ~ 1.2 × 10^14 m^-3 while the discharge current is in a range of 50 - 120 μA.展开更多
The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be r...The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be referenced.In this study,we propose a feasible simulation method for obtaining multi-scale and multi-component digital cores based on three types of sandstone samples.In the proposed method,the plug and subplug samples are scanned via micro-computed tomography at different resolutions.Furthermore,the images are precisely registered using the proposed hybrid image registration method.In case of high-resolution images,the traditional segmentation method is used to segment the cores into pores and minerals.Subsequently,we established the relations between the gray values and the porosity/mineral content in case of the low-resolution images based on the registered domains and the relation curves were applied to the segmentation of the low-resolution images.The core images constitute the multi-scale and multi-component digital core models after segmentation.Further,the elastic properties of the three samples were simulated at both fine and coarse scales based on the multi-scale and multi-component digital core models,and four component models were considered.The results show that the multi-scale and multi-component digital core models can overcome the representative limits of the conventional digital core models and accurately characterize pores and minerals at different scales.The numerical results of the elastic modulus are more representative at large scales,and considerably reliable results can be obtained by appropriately considering the minerals.展开更多
Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into accoun...Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.展开更多
Endoscopic ultrasound (EUS) devices were first designed and manufactured more than 30 years ago, and since then investigators have reported EUS is effective for determining both the staging and the depth of invasion o...Endoscopic ultrasound (EUS) devices were first designed and manufactured more than 30 years ago, and since then investigators have reported EUS is effective for determining both the staging and the depth of invasion of esophageal and gastric cancers. We review the present status, the methods, and the findings of EUS when used to diagnose and stage early esophageal and gastric cancer. EUS using high-frequency ultrasound probes is more accurate than conventional EUS for the evaluation of the depth of invasion of superficial esophageal carcinoma. The rates of accurate evaluation of the depth of invasion by EUS using high-frequency ultrasound probes were 70%-88% for intramucosal cancer, and 83%-94% for submucosal invasive cancer. But the sensitivity of EUS using high-frequency ultrasound probes for the diagnosis of submucosal invasive cancer was relatively low, making it difficult to confirm minute submucosal invasion. The accuracy of EUS using high-frequency ultrasound probes for early gastric tumor classification can be up to 80% compared with 63% for conventional EUS, although the accuracy of EUS using high-frequency ultrasound probes relatively decreases for those patients with depressed-type lesions, undifferentiated cancer, concomitant ulceration, expanded indications, type 0-I?lesions, and lesions located in the upper-third of the stomach. A 92% overall accuracy rate was achieved when both the endoscopic appearance and the findings from EUS using high-frequency ultrasound probes were considered together for tumor classification. Although EUS using high-frequency ultrasound probes has limitations, it has a high depth of invasion accuracy and is a useful procedure to distinguish lesions in the esophagus and stomach that are indicated for endoscopic resection.展开更多
基金Supported by Gansu Provincial Natural Science Foundation of China(Grant No.22JR5RA229)National Natural Science Foundation of China(Grant Nos.51807086,12162021)Hongliu Youth Found of Lanzhou University of Technology and Gansu Provincial Outstanding Graduate Student Innovation Star of China(Grant No.2021CXZX-453).
文摘A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including different coil structures,varies.In this study,two planar eddy current probes with differential pickup structures and the same size,Koch and circular probes,were used to compare lift-off effects.The eddy current distributions of the probes perturbed by 0°and 90°cracks were obtained by finite element analysis.The analysis results show that the 90°crack can impede the eddy current induced by the Koch probe even further at relatively low lift-off distance.The peak-to-peak values of the signal output from the two probes were compared at different lift-off distances using finite element analysis and experimental methods.In addition,the effects of different frequencies on the lift-off were studied experimentally.The results show that the signal peak-to-peak value of the Koch probe for the inspection of cracks in 90°orientation is larger than that of the circular probe when the lift-off distance is smaller than 1.2 mm.In addition,the influence of the lift-off distance on the peak-to-peak signal value of the two probes was studied via normalization.This indicates that the influence becomes more evident with an increase in excitation frequency.This research discloses the lift-off effect of differential planar eddy current probes with different coil shapes and proves the detection merit of the Koch probe for 90°cracks at low lift-off distances.
基金supported by the National Natural Science Foundation of China(82072432)the China-Japan Friendship Hospital Horizontal Project/Spontaneous Research Funding(2022-HX-JC-7)+1 种基金the National High Level Hospital Clinical Research Funding(2022-NHLHCRF-PY-20)the Elite Medical Professionals project of China-Japan Friendship Hospital(ZRJY2021-GG12).
文摘Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
基金support received from the National Natural Science Foundation of China(GrantNos.62204204 and 52175148)Science and Technology Innovation 2030-Major Project(Grant No.2022ZD0208601)+1 种基金Shanghai Sailing Program(Grant No.21YF1451000)Presidential Foundation of CAEP(Grant No.YZJJZQ2022001).
文摘Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue,thus as important tools for brain science research,as well as diagnosis and treatment of brain diseases.However,the rigid neural probes,such as Utah arrays,Michigan probes,and metal microfilament electrodes,are mechanically unmatched with brain tissue and are prone to rejection and glial scarring after implantation,which leads to a significant degradation in the signal quality with the implantation time.In recent years,flexible neural electrodes are rapidly developed with less damage to biological tissues,excellent biocompatibility,and mechanical compliance to alleviate scarring.Among them,the mechanical modeling is important for the optimization of the structure and the implantation process.In this review,the theoretical calculation of the flexible neural probes is firstly summarized with the processes of buckling,insertion,and relative interaction with soft brain tissue for flexible probes from outside to inside.Then,the corresponding mechanical simulation methods are organized considering multiple impact factors to realize minimally invasive implantation.Finally,the technical difficulties and future trends of mechanical modeling are discussed for the next-generation flexible neural probes,which is critical to realize low-invasiveness and long-term coexistence in vivo.
基金supported by the National Key Research and Development Program of China(2022YFD1700300,2022YFE0199800)the National Natural Science Foundation of China(32072443,82104065,32061143045)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20201323)the Distinguished Young Research Project of Anhui Higher Education Institution(2022AH020035).
文摘Exploring plant behavior at the cellular scale in a minimally invasive manner is critical to understanding plant adaptation to the environment.Phytohormones play vital regulatory roles in multiple aspects of plant growth and development and acclimation to environmental changes.Since the biosynthesis,modification,transportation,and degradation of plant hormones in plants change with time and space,their content level and distribution are highly dynamic.To monitor the production,transport,perception,and distribution of phytohormones within undamaged tissues,we require qualitative and quantitative tools endowed with remarkably high temporal and spatial resolution.Fluorescent probes are regarded as excellent tools for widespread plant imaging because of their high sensitivity and selectivity,reproducibility,real-time in situ detection,and uncomplicated mechanism elucidation.In this review,we provide a systematical overview of the progress in the sensing and imaging of phytohormone fluorescent probes and fluorescently labeled phytohormones to their receptors in plants.Moreover,forthcoming viewpoints and possible applications of these fluorescent probes within the realm of plants are also presented.We hold the conviction that the new perspective brought by this paper can promote the development of fluorescent probes,enabling them to have better detection performance in plant hormone imaging.
文摘Pyroptosis is a newly identified form of regulated cell death driven by pathogen-associated molecular patterns(PAMPs),environment-or host-derived damage-associated molecular patterns(DAMPs),gram-negative bacteria,and chemotherapy drugs.Emerging evidence shows the potential of pyroptosis for biosensor development and cancer therapy,particularly for treating cancers resistant to traditional therapies.However,the published pyroptosis reviews mainly focused on multiple pyroptosis mechanisms and pathways.Therefore,it is timely to summarize the application of pyroptosis-based fluorescent probes highlighted by their detection capabilities and sensitivity as well as promising pyroptosis-inducing agents(including small molecules and nanomaterials)for cancer therapy.In this review,we comprehensively reviewed the current strategies for both probes and inducers to diagnosis or fight against cancers based on pyroptosis.We also highlighted the advantages of their strategies of design,mechanism,and application and provided new insights to overcome their challenges.
文摘A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.
基金Biographies: The National Natural Science Foundation of China(29776012).
文摘The expression of mutual impedance between two probes in a circular waveguide is derived by means of a vector potential function, reaction concept and reciprocity theorem. The waveguide is semi-infinite, and one end of the waveguide is terminated to a load with a reflection coefficient. The contribution to the mutual resistance is found to come from the dominant mode, while the contribution to the mutual reactance comes from the dominant mode and the higher order modes. The major contribution to the mutual reactance is from the dominant mode, since the higher modes decay rapidly with the increasing the probes’ of separation distance. However, as the separation distance approaches zero, the higher modes become dominant, which results in a large value of the mutual reactance. The mutual impedance is dependent on the location and height of the probes, their separation distance and the location of the terminal plane.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金The research was supported by the Notion's Fifteenth Scientific and Technological Breakthrough Project: Research of Vector and Mountain Seismic Exploration (No.2001BA605A-12).
文摘Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is more useful for seismic exploration. However, traditional AVO analysis is based on the Zoeppritz equation, which only contains single-interface information. Quantitative interpretation of the thin bed thickness is essential to thin bed structure interpretation, reservoir description, and lateral reservoir prediction. The reflectance spectrum equation based on the elastic wave propagation matrix in the frequency domain derived in this paper shows that both interfaces and intervals have an effect on amplitude. The equation includes information about both single interfaces and volume scattering. Since the reflectance spectrum equation is a continuous function of thin bed thickness and frequency, it is convenient to analyze the effects of a single frequency and bed thickness on the reflectance spectrum. Bed thickness is analyzable until the bed thickness is vanishingly small. These characteristics can't be achieved by Fourier transform. The propagation of seismic waves is complex and various wave modes exist simultaneously. The reflectance spectrum includes various propagating wave modes and multiples and is better for simulating multi-component thin bed AVO responses than the ray tracing method.
文摘Dot-blot hybridization was applied in this paper to detect five viruses infecting cucurbitaceous crops, Zuccini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Papaya ringspot viruswatermelon strain (PRSV-W) and Squash mosaic virus (SqMV), as a good alternative assay in seed health test and epidemiological and transgenic research. Digoxigenin-labelled cDNA probes of the five viruses were synthesized by PCR with the specific primers and applied in dot-blot hybridization to detect five viruses in crude extraction of the infected leaves. And three SqMV probes of different lengths (0.55, 1.6, and 2.7 kb, respectively) were designed to investigate the effect of hybridization. The results showed that the sensitivity for detecting the crude extraction of infected leaves by ZYMV, WMV, CMV, PRSV-W, and SqMV was down to 1:160, 1:160, 1:320, 1:160, and 1:320, respectively. Three SqMV probes of different length showed no differences on the sensitivity and specificity. The digoxigenin-labelled probes prepared by PCR could be used for accurate and rapid identification of 5 viruses infecting cucurbitaceous crops with good stabilities, sensitivities, specificity, and reproducibilifies.
基金financially supported by the National Natural Science Foundation of China (No. 21674011)Beijing Municipal Natural Science Foundation (No. 2172040)
文摘Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.
文摘Two different entry vehicles are presented here: the Inflatable Reentry and Descent Demonstrator (IRDT), and Huygens. Both missions involve (re)entries at conditions close to orbital, and have been performed in 2005. Specific aspects of the design and the mission of IRDT are briefly outlined. The preliminary results of the recent flight of IRDT and the methodology followed at ESTEC for the assessment of radiative fluxes for Huygens are summarised.
基金Supported by the National Natural Science Foundation of China,No. 39880032Major Programs for Science and Technology Development of Guangzhou, No. 01-Z-005-01
文摘AIM: To develop a simplified and efficient method for the preparation of hepatitis C virus (HCV) cDNA microarray probes.METHODS: With the technique of restriction display PCR (RD-PCR), restriction enzyme Sau3A I was chosen to digest the full-length HCV cDNAs. The products were classified and re-amplified by RD-PCR. We separated the differential genes by polyacrylamide gel electrophoresis and silver staining. Single bands cut out from the polyacrylamide gel were isolated. The third-round PCR was performed using the single bands as PCR template.The RD-PCR fragments were purified and cloned into the pMD18-T vector. The recombinant plasmids were extracted from positive clones, and the target gene fragments were sequenced. The cDNA microarray was prepared by spotting RD-PCR products to the surface of amino-modified glass slides using a robot. We validated the detection of microarray by hybridization and sequence analysis.RESULTS: A total of 24 different cDNA fragments ranging from 200 to 800 bp were isolated and sequenced,which were the specific gene fragments of HCV. These fragments could be further used as probes in microarray preparation. The diagnostic capability of the microarray was evaluated after the washing and scanning steps. The results of hybridization and sequence analysis showed that the specificity, sensitivity, accuracy, reproducibility,and linearity in detecting HCV RNA were satisfactory.CONCLUSION: The RD-PCR technique is of great value in obtaining a large number of size-comparable gene probes, which provides a speedy protocol in generating probes for the preparation of microarrays. Microarray prepared as such could be further optimized and applied in the clinical diagnosis of HCV.
基金Project(51005238)supported by the National Natural Science Foundation of China
文摘To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.
文摘Parameters of hydrogen plasma in a miniature Penning discharge ion source, including the electron temperature and the electron density, were measured by using double probes. The results indicate that the electron density increases and the electron temperature decreases with the increase in gas pressure and the discharge current. The electron temperature is about 5 - 9 eV and the electron density is 6.0× 10^13 ~ 1.2 × 10^14 m^-3 while the discharge current is in a range of 50 - 120 μA.
基金supported by the National Natural Science Foundation of China Research(Nos.41574122 and 41374124)National Science and Technology major Project(No.2016ZX05006002-004)。
文摘The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be referenced.In this study,we propose a feasible simulation method for obtaining multi-scale and multi-component digital cores based on three types of sandstone samples.In the proposed method,the plug and subplug samples are scanned via micro-computed tomography at different resolutions.Furthermore,the images are precisely registered using the proposed hybrid image registration method.In case of high-resolution images,the traditional segmentation method is used to segment the cores into pores and minerals.Subsequently,we established the relations between the gray values and the porosity/mineral content in case of the low-resolution images based on the registered domains and the relation curves were applied to the segmentation of the low-resolution images.The core images constitute the multi-scale and multi-component digital core models after segmentation.Further,the elastic properties of the three samples were simulated at both fine and coarse scales based on the multi-scale and multi-component digital core models,and four component models were considered.The results show that the multi-scale and multi-component digital core models can overcome the representative limits of the conventional digital core models and accurately characterize pores and minerals at different scales.The numerical results of the elastic modulus are more representative at large scales,and considerably reliable results can be obtained by appropriately considering the minerals.
基金supported by the Postdoctoral Science Foundation of China(20080431380)
文摘Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.
文摘Endoscopic ultrasound (EUS) devices were first designed and manufactured more than 30 years ago, and since then investigators have reported EUS is effective for determining both the staging and the depth of invasion of esophageal and gastric cancers. We review the present status, the methods, and the findings of EUS when used to diagnose and stage early esophageal and gastric cancer. EUS using high-frequency ultrasound probes is more accurate than conventional EUS for the evaluation of the depth of invasion of superficial esophageal carcinoma. The rates of accurate evaluation of the depth of invasion by EUS using high-frequency ultrasound probes were 70%-88% for intramucosal cancer, and 83%-94% for submucosal invasive cancer. But the sensitivity of EUS using high-frequency ultrasound probes for the diagnosis of submucosal invasive cancer was relatively low, making it difficult to confirm minute submucosal invasion. The accuracy of EUS using high-frequency ultrasound probes for early gastric tumor classification can be up to 80% compared with 63% for conventional EUS, although the accuracy of EUS using high-frequency ultrasound probes relatively decreases for those patients with depressed-type lesions, undifferentiated cancer, concomitant ulceration, expanded indications, type 0-I?lesions, and lesions located in the upper-third of the stomach. A 92% overall accuracy rate was achieved when both the endoscopic appearance and the findings from EUS using high-frequency ultrasound probes were considered together for tumor classification. Although EUS using high-frequency ultrasound probes has limitations, it has a high depth of invasion accuracy and is a useful procedure to distinguish lesions in the esophagus and stomach that are indicated for endoscopic resection.