The developments of multi-core systems(MCS)have considerably improved the existing technologies in thefield of computer architecture.The MCS comprises several processors that are heterogeneous for resource capacities,...The developments of multi-core systems(MCS)have considerably improved the existing technologies in thefield of computer architecture.The MCS comprises several processors that are heterogeneous for resource capacities,working environments,topologies,and so on.The existing multi-core technology unlocks additional research opportunities for energy minimization by the use of effective task scheduling.At the same time,the task scheduling process is yet to be explored in the multi-core systems.This paper presents a new hybrid genetic algorithm(GA)with a krill herd(KH)based energy-efficient scheduling techni-que for multi-core systems(GAKH-SMCS).The goal of the GAKH-SMCS tech-nique is to derive scheduling tasks in such a way to achieve faster completion time and minimum energy dissipation.The GAKH-SMCS model involves a multi-objectivefitness function using four parameters such as makespan,processor utilization,speedup,and energy consumption to schedule tasks proficiently.The performance of the GAKH-SMCS model has been validated against two datasets namely random dataset and benchmark dataset.The experimental outcome ensured the effectiveness of the GAKH-SMCS model interms of makespan,pro-cessor utilization,speedup,and energy consumption.The overall simulation results depicted that the presented GAKH-SMCS model achieves energy effi-ciency by optimal task scheduling process in MCS.展开更多
With the development of high-performance computing,it is possible to solve large-scale computing problems.However,the irregularity and access characteristics of computing problems bring challenges to the realisation a...With the development of high-performance computing,it is possible to solve large-scale computing problems.However,the irregularity and access characteristics of computing problems bring challenges to the realisation and performance optimisation.Improving the performance of a single core makes it challenging to maintain Moore's law,and multi-core processors emerge.A chip brings together multiple universal processor cores of equal status and has the same structure supported by an isomorphic multi-core processor.In high-performance computing,the granularity of computing tasks leads to the complexity of scheduling strategies.Satisfying high system performance,load balancing and processor fault tolerance at a minimum cost is the key to task scheduling in the high-performance field,especially in specific multi-core hardware architecture.In this study,global real-time task scheduling is implemented in a high-performance multi-core system.The system adopts the hybrid scheduling among clusters and the intelligent fitting within clusters to implement the global real-time task scheduling strategy.In the cluster scheduling policy,tasks are allowed to preempt the core with low priority,and the priority of tasks that access memory is dynamically improved,higher than that of all the tasks without memory access.An intelligent fitting method is also proposed.When the data read by the task is in the cache and the cache access ability value of the task is within a reasonable threshold,the priority of the task is promoted to the highest priority,pre-empting the core without the access memory task.The results show that the intelligently fitting global scheduling strategy for multi-core systems has better performance in the nuclear utilisation rate and task schedulability.展开更多
Packet classification has been studied for decades; it classifies packets into specific flows based on a given rule set. As software-defined network was proposed, a recent trend of packet classification is to scale th...Packet classification has been studied for decades; it classifies packets into specific flows based on a given rule set. As software-defined network was proposed, a recent trend of packet classification is to scale the five-tuple model to multi-tuple. In general, packet classification on multiple fields is a complex problem. Although most existing software-based algorithms have been proved extraordinary in practice, they are only suitable for the classic five-tuple model and difficult to be scaled up. Meanwhile, hardware-specific solutions are inflexible and expensive, and some of them are power consuming. In this paper, we propose a universal multi-dimensional packet classification approach for multi-core systems. In our approach, novel data structures and four decomposition-based algorithms are designed to optimize the classification and updating of rules. For multi-field rules, a rule set is cut into several parts according to the number of fields. Each part works independently. In this way, the fields are searched in parallel and all the partial results are merged together at last. To demonstrate the feasibility of our approach, we implement a prototype and evaluate its throughput and latency. Experimental results show that our approach achieves a 40% higher throughput than that of other decomposed-based algorithms and a 43% lower latency of rule incremental update than that of the other algorithms on average. Furthermore, our approach saves 39% memory consumption on average and has a good scalability.展开更多
Contemporary operating systems for single-ISA (instruction set architecture) multi-core systems attempt to distribute tasks equally among all the CPUs. This approach works relatively well when there is no difference...Contemporary operating systems for single-ISA (instruction set architecture) multi-core systems attempt to distribute tasks equally among all the CPUs. This approach works relatively well when there is no difference in CPU capability. However, there are cases in which CPU capability differs from one another. For instance, static capability asymmetry results from the advent of new asymmetric hardware, and dynamic capability asymmetry comes from the operating system (OS) outside noise caused from networking or I/O handling. These asymmetries can make it hard for the OS scheduler to evenly distribute the tasks, resulting in less efficient load balancing. In this paper, we propose a user-level load balaneer for parallel applications, called the 'capability balancer', which recognizes the difference of CPU capability and makes subtasks share the entire CPU capability fairly. The balancer can coexist with the existing kemel-level load balancer without detrimenting the behavior of the kernel balancer. The capability balancer can fairly distribute CPU capability to tasks with very little overhead. For real workloads like the NAS Parallel Benchmark (NPB), we have accomplished speedups of up to 9.8% and 8.5% in dynamic and static asymmetries, respectively. We have also experienced speedups of 13.3% for dynamic asymmetry and 24.1% for static asymmetry in a competitive environment. The impacts of our task selection policies, FIFO (first in, first out) and cache, were compared. The use of the cache policy led to a speedup of 5.3% in overall execution time and a decrease of 4.7% in the overall cache miss count, compared with the FIFO policy, which is used by default.展开更多
The state-of-the-art multi-core computer systems are based on Very Large Scale three Dimensional (3D) Integrated circuits (VLSI). In order to provide high-speed vertical data transmission in such 3D systems, efficient...The state-of-the-art multi-core computer systems are based on Very Large Scale three Dimensional (3D) Integrated circuits (VLSI). In order to provide high-speed vertical data transmission in such 3D systems, efficient Through-Silicon Via (TSV) technology is critically important. In this paper, various Radio Frequency (RF) TSV designs and models are proposed. Specifically, the Cu-plug TSV with surrounding ground TSVs is used as the baseline structure. For further improvement, the dielectric coaxial and novel air-gap coaxial TSVs are introduced. Using the empirical parameters of these coaxial TSVs, the simulation results are obtained demonstrating that these coaxial RF-TSVs can provide two-order higher of cut-off frequencies than the Cu-plug TSVs. Based on these new RF-TSV technologies, we propose a novel 3D multi-core computer system as well as new architectures for manipulating the interfaces between RF and baseband circuit. Taking into consideration the scaling down of IC manufacture technologies, predictions for the performance of future generations of circuits are made. With simulation results indicating energy per bit and area per bit being reduced by 7% and 11% respectively, we can conclude that the proposed method is a worthwhile guideline for the design of future multi-core computer ICs.展开更多
This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe...This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical res...The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical responses of nonHermitian systems with anomalous time-reversal symmetry, in both one dimension and two dimensions. Specifically, we focus on whether the systems will exhibit a non-Hermitian skin effect. We employ the theory of generalized Brillouin zone and also numerical methods to show that the anomalous time-reversal symmetry can prevent the skin effect in onedimensional non-Hermitian systems, but is unable to exert the same effectiveness in two-dimensional cases.展开更多
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,...Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,respectively.In these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse system.By examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse systems.We also consider the distribution characteristics of the average coordination number and average velocity for the moving particles.The results support that the polydisperse particle systems are more stable in the T2 stage.展开更多
Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit q...Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit quantum states. For the bipartite system, we derive a zero quantum discord which will remain unchanged under the phase damping channel. For multiparitite systems, it is found that the quantum discord can be classified into three categories and the quantum discord for odd-partite systems can exhibit freezing under the phase damping channel, while the freezing does not exist in the even-partite systems.展开更多
This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theor...This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.展开更多
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.展开更多
This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is s...This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
基金supported by Taif University Researchers Supporting Program(Project Number:TURSP-2020/195)Taif University,Saudi Arabia.Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R203)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The developments of multi-core systems(MCS)have considerably improved the existing technologies in thefield of computer architecture.The MCS comprises several processors that are heterogeneous for resource capacities,working environments,topologies,and so on.The existing multi-core technology unlocks additional research opportunities for energy minimization by the use of effective task scheduling.At the same time,the task scheduling process is yet to be explored in the multi-core systems.This paper presents a new hybrid genetic algorithm(GA)with a krill herd(KH)based energy-efficient scheduling techni-que for multi-core systems(GAKH-SMCS).The goal of the GAKH-SMCS tech-nique is to derive scheduling tasks in such a way to achieve faster completion time and minimum energy dissipation.The GAKH-SMCS model involves a multi-objectivefitness function using four parameters such as makespan,processor utilization,speedup,and energy consumption to schedule tasks proficiently.The performance of the GAKH-SMCS model has been validated against two datasets namely random dataset and benchmark dataset.The experimental outcome ensured the effectiveness of the GAKH-SMCS model interms of makespan,pro-cessor utilization,speedup,and energy consumption.The overall simulation results depicted that the presented GAKH-SMCS model achieves energy effi-ciency by optimal task scheduling process in MCS.
基金National Natural Science Foundation of Heilongjiang Province of China(Outstanding Youth Foundation),Grant/Award Number:JJ2019YX0922Basic Scientific Research Program of China,Grant/Award Number:JCKY2020208B045。
文摘With the development of high-performance computing,it is possible to solve large-scale computing problems.However,the irregularity and access characteristics of computing problems bring challenges to the realisation and performance optimisation.Improving the performance of a single core makes it challenging to maintain Moore's law,and multi-core processors emerge.A chip brings together multiple universal processor cores of equal status and has the same structure supported by an isomorphic multi-core processor.In high-performance computing,the granularity of computing tasks leads to the complexity of scheduling strategies.Satisfying high system performance,load balancing and processor fault tolerance at a minimum cost is the key to task scheduling in the high-performance field,especially in specific multi-core hardware architecture.In this study,global real-time task scheduling is implemented in a high-performance multi-core system.The system adopts the hybrid scheduling among clusters and the intelligent fitting within clusters to implement the global real-time task scheduling strategy.In the cluster scheduling policy,tasks are allowed to preempt the core with low priority,and the priority of tasks that access memory is dynamically improved,higher than that of all the tasks without memory access.An intelligent fitting method is also proposed.When the data read by the task is in the cache and the cache access ability value of the task is within a reasonable threshold,the priority of the task is promoted to the highest priority,pre-empting the core without the access memory task.The results show that the intelligently fitting global scheduling strategy for multi-core systems has better performance in the nuclear utilisation rate and task schedulability.
基金This work was supported by the National Basic Research 973 Program of China under Grant No. 2012CB315805 and the National Natural Science Foundation of China under Grant Nos. 61472130 and 61702174.
文摘Packet classification has been studied for decades; it classifies packets into specific flows based on a given rule set. As software-defined network was proposed, a recent trend of packet classification is to scale the five-tuple model to multi-tuple. In general, packet classification on multiple fields is a complex problem. Although most existing software-based algorithms have been proved extraordinary in practice, they are only suitable for the classic five-tuple model and difficult to be scaled up. Meanwhile, hardware-specific solutions are inflexible and expensive, and some of them are power consuming. In this paper, we propose a universal multi-dimensional packet classification approach for multi-core systems. In our approach, novel data structures and four decomposition-based algorithms are designed to optimize the classification and updating of rules. For multi-field rules, a rule set is cut into several parts according to the number of fields. Each part works independently. In this way, the fields are searched in parallel and all the partial results are merged together at last. To demonstrate the feasibility of our approach, we implement a prototype and evaluate its throughput and latency. Experimental results show that our approach achieves a 40% higher throughput than that of other decomposed-based algorithms and a 43% lower latency of rule incremental update than that of the other algorithms on average. Furthermore, our approach saves 39% memory consumption on average and has a good scalability.
基金supported by the Next-Generation Information Computing Development Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2011-0020521)the Korea Communications Commission,under the Communications Policy Research Center Support Program supervised by the Korea Communications Agency (No. KCA-2011-1194100004-110010100)
文摘Contemporary operating systems for single-ISA (instruction set architecture) multi-core systems attempt to distribute tasks equally among all the CPUs. This approach works relatively well when there is no difference in CPU capability. However, there are cases in which CPU capability differs from one another. For instance, static capability asymmetry results from the advent of new asymmetric hardware, and dynamic capability asymmetry comes from the operating system (OS) outside noise caused from networking or I/O handling. These asymmetries can make it hard for the OS scheduler to evenly distribute the tasks, resulting in less efficient load balancing. In this paper, we propose a user-level load balaneer for parallel applications, called the 'capability balancer', which recognizes the difference of CPU capability and makes subtasks share the entire CPU capability fairly. The balancer can coexist with the existing kemel-level load balancer without detrimenting the behavior of the kernel balancer. The capability balancer can fairly distribute CPU capability to tasks with very little overhead. For real workloads like the NAS Parallel Benchmark (NPB), we have accomplished speedups of up to 9.8% and 8.5% in dynamic and static asymmetries, respectively. We have also experienced speedups of 13.3% for dynamic asymmetry and 24.1% for static asymmetry in a competitive environment. The impacts of our task selection policies, FIFO (first in, first out) and cache, were compared. The use of the cache policy led to a speedup of 5.3% in overall execution time and a decrease of 4.7% in the overall cache miss count, compared with the FIFO policy, which is used by default.
文摘The state-of-the-art multi-core computer systems are based on Very Large Scale three Dimensional (3D) Integrated circuits (VLSI). In order to provide high-speed vertical data transmission in such 3D systems, efficient Through-Silicon Via (TSV) technology is critically important. In this paper, various Radio Frequency (RF) TSV designs and models are proposed. Specifically, the Cu-plug TSV with surrounding ground TSVs is used as the baseline structure. For further improvement, the dielectric coaxial and novel air-gap coaxial TSVs are introduced. Using the empirical parameters of these coaxial TSVs, the simulation results are obtained demonstrating that these coaxial RF-TSVs can provide two-order higher of cut-off frequencies than the Cu-plug TSVs. Based on these new RF-TSV technologies, we propose a novel 3D multi-core computer system as well as new architectures for manipulating the interfaces between RF and baseband circuit. Taking into consideration the scaling down of IC manufacture technologies, predictions for the performance of future generations of circuits are made. With simulation results indicating energy per bit and area per bit being reduced by 7% and 11% respectively, we can conclude that the proposed method is a worthwhile guideline for the design of future multi-core computer ICs.
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.
基金supported by the National Natural Science Foundation of China(82230117).
文摘This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12304201)。
文摘The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical responses of nonHermitian systems with anomalous time-reversal symmetry, in both one dimension and two dimensions. Specifically, we focus on whether the systems will exhibit a non-Hermitian skin effect. We employ the theory of generalized Brillouin zone and also numerical methods to show that the anomalous time-reversal symmetry can prevent the skin effect in onedimensional non-Hermitian systems, but is unable to exert the same effectiveness in two-dimensional cases.
基金Project supported by the Qingdao National Laboratory for Marine Science and Technology(Grant No.2015ASKJ01)the National Natural Science Foundation of China(Grant Nos.11972212,12072200,and 12002213).
文摘Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems.Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems,respectively.In these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse system.By examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse systems.We also consider the distribution characteristics of the average coordination number and average velocity for the moving particles.The results support that the polydisperse particle systems are more stable in the T2 stage.
基金partially supported by the National Natural Science Foundation of China (Grant No. 11601338)。
文摘Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit quantum states. For the bipartite system, we derive a zero quantum discord which will remain unchanged under the phase damping channel. For multiparitite systems, it is found that the quantum discord can be classified into three categories and the quantum discord for odd-partite systems can exhibit freezing under the phase damping channel, while the freezing does not exist in the even-partite systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.62363005)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20161BAB212032 and 20232BAB202034)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant Nos.GJJ202602 and GJJ202601)。
文摘This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.
文摘The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.
基金supported by National Natural Science Foundation of China (62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04, ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions (2019KJI008)。
文摘This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.