期刊文献+
共找到1,207篇文章
< 1 2 61 >
每页显示 20 50 100
Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis:Evidence from Shimla district of North-west Indian Himalayan region
1
作者 SHARMA Aastha SAJJAD Haroon +2 位作者 RAHAMAN Md Hibjur SAHA Tamal Kanti BHUYAN Nirsobha 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2368-2393,共26页
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ... The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics. 展开更多
关键词 Landslide susceptibility Site-specific factors Machine learning models Hybrid ensemble learning Geospatial techniques Himalayan region
下载PDF
Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter
2
作者 R.Sujatha K.Nimala 《Computers, Materials & Continua》 SCIE EI 2024年第2期1669-1686,共18页
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir... Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88. 展开更多
关键词 Bidirectional encoder for representation of transformer conversation ensemble model fine-tuning generalized autoregressive pretraining for language understanding generative pre-trained transformer hyperparameter tuning natural language processing robustly optimized BERT pretraining approach sentence classification transformer models
下载PDF
Impact of Perturbation Schemes on the Ensemble Prediction in a Coupled Lorenz Model 被引量:1
3
作者 Qian ZOU Quanjia ZHONG +4 位作者 Jiangyu MAO Ruiqiang DING Deyu LU Jianping LI Xuan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期501-513,共13页
Based on a simple coupled Lorenz model,we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics.Four initial perturb... Based on a simple coupled Lorenz model,we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics.Four initial perturbation approaches are used in the ensemble forecasting experiments:the random perturbation(RP),the bred vector(BV),the ensemble transform Kalman filter(ETKF),and the nonlinear local Lyapunov vector(NLLV)methods.Results show that,regardless of the method used,the ensemble averages behave indistinguishably from the control forecasts during the first few time steps.Due to different error growth in different time-scale systems,the ensemble averages perform better than the control forecast after very short lead times in a fast subsystem but after a relatively long period of time in a slow subsystem.Due to the coupled dynamic processes,the addition of perturbations to fast variables or to slow variables can contribute to an improvement in the forecasting skill for fast variables and slow variables.Regarding the initial perturbation approaches,the NLLVs show higher forecasting skill than the BVs or RPs overall.The NLLVs and ETKFs had nearly equivalent prediction skill,but NLLVs performed best by a narrow margin.In particular,when adding perturbations to slow variables,the independent perturbations(NLLVs and ETKFs)perform much better in ensemble prediction.These results are simply implied in a real coupled air–sea model.For the prediction of oceanic variables,using independent perturbations(NLLVs)and adding perturbations to oceanic variables are expected to result in better performance in the ensemble prediction. 展开更多
关键词 ensemble prediction nonlinear local Lyapunov vector(NLLV) ensemble transform Kalman filter(ETKF) coupled air-sea models
下载PDF
A blast furnace fault monitoring algorithm with low false alarm rate:Ensemble of greedy dynamic principal component analysis-Gaussian mixture model 被引量:1
4
作者 Xiongzhuo Zhu Dali Gao +1 位作者 Chong Yang Chunjie Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期151-161,共11页
The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring f... The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable. 展开更多
关键词 Chemical processes Principal component analysis Gaussian mixture model Process monitoring ensemble Process control
下载PDF
Ensemble habitat suitability modeling of stomatopods with Oratosquilla oratoria as an example
5
作者 Lisha Guan Xianshi Jin +1 位作者 Tao Yang Xiujuan Shan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第4期93-102,共10页
Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwe... Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwest Pacific. Yet, few studies have published to promote accurate habitat identification of stomatopods, obstructing scientific management and conservation of these valuable organisms. This study provides an ensemble modeling framework for habitat suitability modeling of stomatopods, utilizing the O. oratoria stock in the Bohai Sea as an example. Two modeling techniques(i.e., generalized additive model(GAM) and geographical weighted regression(GWR)) were applied to select environmental predictors(especially the selection between two types of sediment metrics) that better characterize O. oratoria distribution and build separate habitat suitability models(HSM). The performance of the individual HSMs were compared on interpolation accuracy and transferability.Then, they were integrated to check whether the ensemble model outperforms either individual model, according to fishers’ knowledge and scientific survey data. As a result, grain-size metrics of sediment outperformed sediment content metrics in modeling O. oratoria habitat, possibly because grain-size metrics not only reflect the effect of substrates on burrow development, but also link to sediment heat capacity which influences individual thermoregulation. Moreover, the GWR-based HSM outperformed the GAM-based HSM in interpolation accuracy,while the latter one displayed better transferability. On balance, the ensemble HSM appeared to improve the predictive performance overall, as it could avoid dependence on a single model type and successfully identified fisher-recognized and survey-indicated suitable habitats in either sparsely sampled or well investigated areas. 展开更多
关键词 habitat suitability STOMATOPOD coastal fisheries predictor selection ensemble model
下载PDF
An Intelligent Hazardous Waste Detection and Classification Model Using Ensemble Learning Techniques
6
作者 Mesfer Al Duhayyim Saud S.Alotaibi +5 位作者 Shaha Al-Otaibi Fahd N.Al-Wesabi Mahmoud Othman Ishfaq Yaseen Mohammed Rizwanullah Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第2期3315-3332,共18页
Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classif... Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process.This study concentrates on the design of hazardous waste detection and classification using ensemble learning(HWDC-EL)technique to reduce toxicity and improve human health.The goal of the HWDC-EL technique is to detect the multiple classes of wastes,particularly hazardous and non-hazardous wastes.The HWDC-EL technique involves the ensemble of three feature extractors using Model Averaging technique namely discrete local binary patterns(DLBP),EfficientNet,and DenseNet121.In addition,the flower pollination algorithm(FPA)based hyperparameter optimizers are used to optimally adjust the parameters involved in the EfficientNet and DenseNet121 models.Moreover,a weighted voting-based ensemble classifier is derived using three machine learning algorithms namely support vector machine(SVM),extreme learning machine(ELM),and gradient boosting tree(GBT).The performance of the HWDC-EL technique is tested using a benchmark Garbage dataset and it obtains a maximum accuracy of 98.85%. 展开更多
关键词 Hazardous waste image classification ensemble learning deep learning intelligent models human health weighted voting model
下载PDF
Ensemble Model for Spindle Thermal Displacement Prediction of Machine Tools
7
作者 Ping-Huan Kuo Ssu-Chi Chen +2 位作者 Chia-Ho Lee Po-Chien Luan Her-Terng Yau 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期319-343,共25页
Numerous factors affect the increased temperature of a machine tool, including prolonged and high-intensity usage,tool-workpiece interaction, mechanical friction, and elevated ambient temperatures, among others. Conse... Numerous factors affect the increased temperature of a machine tool, including prolonged and high-intensity usage,tool-workpiece interaction, mechanical friction, and elevated ambient temperatures, among others. Consequently,spindle thermal displacement occurs, and machining precision suffers. To prevent the errors caused by thetemperature rise of the Spindle fromaffecting the accuracy during themachining process, typically, the factory willwarm up themachine before themanufacturing process.However, if there is noway to understand the tool spindle’sthermal deformation, the machining quality will be greatly affected. In order to solve the above problem, thisstudy aims to predict the thermal displacement of the machine tool by using intelligent algorithms. In the practicalapplication, only a few temperature sensors are used to input the information into the prediction model for realtimethermal displacement prediction. This approach has greatly improved the quality of tool processing.However,each algorithm has different performances in different environments. In this study, an ensemble model is used tointegrate Long Short-TermMemory (LSTM) with Support VectorMachine (SVM). The experimental results showthat the prediction performance of LSTM-SVM is higher than that of other machine learning algorithms. 展开更多
关键词 Thermal displacement ensemble model LSTM milling machine spindle
下载PDF
An Efficient Automated Technique for Classification of Breast Cancer Using Deep Ensemble Model
8
作者 Muhammad Zia Ur Rehman Jawad Ahmad +3 位作者 Emad Sami Jaha Abdullah Marish Ali Mohammed A.Alzain Faisal Saeed 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期897-911,共15页
Breast cancer is one of the leading cancers among women.It has the second-highest mortality rate in women after lung cancer.Timely detection,especially in the early stages,can help increase survival rates.However,manu... Breast cancer is one of the leading cancers among women.It has the second-highest mortality rate in women after lung cancer.Timely detection,especially in the early stages,can help increase survival rates.However,manual diagnosis of breast cancer is a tedious and time-consuming process,and the accuracy of detection is reliant on the quality of the images and the radiologist’s experience.However,computer-aided medical diagnosis has recently shown promising results,leading to the need to develop an efficient system that can aid radiologists in diagnosing breast cancer in its early stages.The research presented in this paper is focused on the multi-class classification of breast cancer.The deep transfer learning approach has been utilized to train the deep learning models,and a pre-processing technique has been used to improve the quality of the ultrasound dataset.The proposed technique utilizes two deep learning models,Mobile-NetV2 and DenseNet201,for the composition of the deep ensemble model.Deep learning models are fine-tuned along with hyperparameter tuning to achieve better results.Subsequently,entropy-based feature selection is used.Breast cancer identification using the proposed classification approach was found to attain an accuracy of 97.04%,while the sensitivity and F1 score were 96.87%and 96.76%,respectively.The performance of the proposed model is very effective and outperforms other state-of-the-art techniques presented in the literature. 展开更多
关键词 Breast cancer image enhancement ensemble model transfer learning feature selection
下载PDF
A Deep Learning Ensemble Method for Forecasting Daily Crude Oil Price Based on Snapshot Ensemble of Transformer Model
9
作者 Ahmed Fathalla Zakaria Alameer +1 位作者 Mohamed Abbas Ahmed Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期929-950,共22页
The oil industries are an important part of a country’s economy.The crude oil’s price is influenced by a wide range of variables.Therefore,how accurately can countries predict its behavior and what predictors to emp... The oil industries are an important part of a country’s economy.The crude oil’s price is influenced by a wide range of variables.Therefore,how accurately can countries predict its behavior and what predictors to employ are two main questions.In this view,we propose utilizing deep learning and ensemble learning techniques to boost crude oil’s price forecasting performance.The suggested method is based on a deep learning snapshot ensemble method of the Transformer model.To examine the superiority of the proposed model,this paper compares the proposed deep learning ensemble model against different machine learning and statistical models for daily Organization of the Petroleum Exporting Countries(OPEC)oil price forecasting.Experimental results demonstrated the outperformance of the proposed method over statistical and machine learning methods.More precisely,the proposed snapshot ensemble of Transformer method achieved relative improvement in the forecasting performance compared to autoregressive integrated moving average ARIMA(1,1,1),ARIMA(0,1,1),autoregressive moving average(ARMA)(0,1),vector autoregression(VAR),random walk(RW),support vector machine(SVM),and random forests(RF)models by 99.94%,99.62%,99.87%,99.65%,7.55%,98.38%,and 99.35%,respectively,according to mean square error metric. 展开更多
关键词 Deep learning ensemble learning transformer model crude oil price
下载PDF
Dynamic Ensemble Multivariate Time Series Forecasting Model for PM2.5
10
作者 Narendran Sobanapuram Muruganandam Umamakeswari Arumugam 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期979-989,共11页
In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many me... In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared. 展开更多
关键词 Dynamic transfer ensemble model air pollution time series analysis multivariate analysis
下载PDF
Attenuate Class Imbalance Problem for Pneumonia Diagnosis Using Ensemble Parallel Stacked Pre-Trained Models
11
作者 Aswathy Ravikumar Harini Sriraman 《Computers, Materials & Continua》 SCIE EI 2023年第4期891-909,共19页
Pneumonia is an acute lung infection that has caused many fatalitiesglobally. Radiologists often employ chest X-rays to identify pneumoniasince they are presently the most effective imaging method for this purpose.Com... Pneumonia is an acute lung infection that has caused many fatalitiesglobally. Radiologists often employ chest X-rays to identify pneumoniasince they are presently the most effective imaging method for this purpose.Computer-aided diagnosis of pneumonia using deep learning techniques iswidely used due to its effectiveness and performance. In the proposed method,the Synthetic Minority Oversampling Technique (SMOTE) approach is usedto eliminate the class imbalance in the X-ray dataset. To compensate forthe paucity of accessible data, pre-trained transfer learning is used, and anensemble Convolutional Neural Network (CNN) model is developed. Theensemble model consists of all possible combinations of the MobileNetv2,Visual Geometry Group (VGG16), and DenseNet169 models. MobileNetV2and DenseNet169 performed well in the Single classifier model, with anaccuracy of 94%, while the ensemble model (MobileNetV2+DenseNet169)achieved an accuracy of 96.9%. Using the data synchronous parallel modelin Distributed Tensorflow, the training process accelerated performance by98.6% and outperformed other conventional approaches. 展开更多
关键词 Pneumonia prediction distributed deep learning data parallel model ensemble deep learning class imbalance skewed data
下载PDF
MDEV Model:A Novel Ensemble-Based Transfer Learning Approach for Pneumonia Classification Using CXR Images
12
作者 Mehwish Shaikh Isma Farah Siddiqui +3 位作者 Qasim Arain Jahwan Koo Mukhtiar Ali Unar Nawab Muhammad Faseeh Qureshi 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期287-302,共16页
Pneumonia is a dangerous respiratory disease due to which breathing becomes incredibly difficult and painful;thus,catching it early is crucial.Medical physicians’time is limited in outdoor situations due to many pati... Pneumonia is a dangerous respiratory disease due to which breathing becomes incredibly difficult and painful;thus,catching it early is crucial.Medical physicians’time is limited in outdoor situations due to many patients;therefore,automated systems can be a rescue.The input images from the X-ray equipment are also highly unpredictable due to variances in radiologists’experience.Therefore,radiologists require an automated system that can swiftly and accurately detect pneumonic lungs from chest x-rays.In medical classifications,deep convolution neural networks are commonly used.This research aims to use deep pretrained transfer learning models to accurately categorize CXR images into binary classes,i.e.,Normal and Pneumonia.The MDEV is a proposed novel ensemble approach that concatenates four heterogeneous transfer learning models:Mobile-Net,DenseNet-201,EfficientNet-B0,and VGG-16,which have been finetuned and trained on 5,856 CXR images.The evaluation matrices used in this research to contrast different deep transfer learning architectures include precision,accuracy,recall,AUC-roc,and f1-score.The model effectively decreases training loss while increasing accuracy.The findings conclude that the proposed MDEV model outperformed cutting-edge deep transfer learning models and obtains an overall precision of 92.26%,an accuracy of 92.15%,a recall of 90.90%,an auc-roc score of 90.9%,and f-score of 91.49%with minimal data pre-processing,data augmentation,finetuning and hyperparameter adjustment in classifying Normal and Pneumonia chests. 展开更多
关键词 Deep transfer learning convolution neural network image processing computer vision ensemble learning pneumonia classification MDEV model
下载PDF
Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images
13
作者 Fuat Türk 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1357-1373,共17页
Covid-19 is a deadly virus that is rapidly spread around the world towards the end of the 2020.The consequences of this virus are quite frightening,especially when accompanied by an underlying disease.The novelty of t... Covid-19 is a deadly virus that is rapidly spread around the world towards the end of the 2020.The consequences of this virus are quite frightening,especially when accompanied by an underlying disease.The novelty of the virus,the constant emergence of different variants and its rapid spread have a negative impact on the control and treatment process.Although the new test kits provide almost certain results,chest X-rays are extremely important to detect the progression and degree of the disease.In addition to the Covid-19 virus,pneumonia and harmless opacity of the lungs also complicate the diagnosis.Considering the negative results caused by the virus and the treatment costs,the importance of fast and accurate diagnosis is clearly seen.In this context,deep learning methods appear as an extremely popular approach.In this study,a hybrid model design with superior properties of convolutional neural networks is presented to correctly classify the Covid-19 disease.In addition,in order to contribute to the literature,a suitable dataset with balanced case numbers that can be used in all artificial intelligence classification studies is presented.With this ensemble model design,quite remarkable results are obtained for the diagnosis of three and four-class Covid-19.The proposed model can classify normal,pneumonia,and Covid-19 with 92.6%accuracy and 82.6%for normal,pneumonia,Covid-19,and lung opacity. 展开更多
关键词 Deep learning multi class diagnosis Covid-19 Covid-19 ensemble model medical image analysis
下载PDF
Intrusion Detection Using Ensemble Wrapper Filter Based Feature Selection with Stacking Model
14
作者 D.Karthikeyan V.Mohan Raj +1 位作者 J.Senthilkumar Y.Suresh 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期645-659,共15页
The number of attacks is growing tremendously in tandem with the growth of internet technologies.As a result,protecting the private data from prying eyes has become a critical and tough undertaking.Many intrusion dete... The number of attacks is growing tremendously in tandem with the growth of internet technologies.As a result,protecting the private data from prying eyes has become a critical and tough undertaking.Many intrusion detection solutions have been offered by researchers in order to decrease the effect of these attacks.For attack detection,the prior system has created an SMSRPF(Stacking Model Significant Rule Power Factor)classifier.To provide creative instance detection,the SMSRPF combines the detection of trained classifiers such as DT(Decision Tree)and RF(Random Forest).Nevertheless,it does not generate any accuratefindings that are adequate.The suggested system has built an EWF(Ensemble Wrapper Filter)feature selection with SMSRPF classifier for attack detection so as to overcome this problem.The UNSW-NB15 dataset is used as an input in this proposed research project.Specifically,min–max normalization approach is used to pre-process the incoming data.The feature selection is then carried out using EWF.Based on the selected features,SMSRPF classifiers are utilized to detect the attacks.The SMSRPF is integrated with the trained classi-fiers such as DT and RF to create creative instance detection.After that,the testing data is classified using MCAR(Multi-Class Classification based on Association Rules).The SRPF judges the rules correctly even when the confidence and the lift measures fail.Regarding accuracy,precision,recall,f-measure,computation time,and error,the experimental findings suggest that the new system outperforms the prior systems. 展开更多
关键词 Intrusion detection system(IDS) ensemble wrapperfilter(EWF) stacking model with significant rule power factor(SMSRPF) classifier
下载PDF
Ensemble Bayesian method for parameter distribution inference:application to reactor physics 被引量:1
15
作者 Jia‑Qin Zeng Hai‑Xiang Zhang +1 位作者 He‑Lin Gong Ying‑Ting Luo 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期216-228,共13页
The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model ... The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model parameters from the perspective of random variables and describe the general form of the parameter distribution inference problem.Under this framework,we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo(MCMC)method.Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed method converges quickly and can estimate parameters effectively,even for several correlated parameters simultaneously.Our experiments include cases of engineering software calls,demonstrating that the method can be applied to engineering,such as nuclear reactor engineering. 展开更多
关键词 model parameters Bayesian inference Frequency distribution ensemble Bayesian method KL divergence
下载PDF
Landslide susceptibility assessment in Western Henan Province based on a comparison of conventional and ensemble machine learning 被引量:1
16
作者 Wen-geng Cao Yu Fu +4 位作者 Qiu-yao Dong Hai-gang Wang Yu Ren Ze-yan Li Yue-ying Du 《China Geology》 CAS CSCD 2023年第3期409-419,共11页
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive... Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management. 展开更多
关键词 Landslide susceptibility model Risk assessment Machine learning Support vector machines Logistic regression Random forest Extreme gradient boosting Linear discriminant analysis ensemble modeling Factor analysis Geological disaster survey engineering Middle mountain area Yellow River Basin
下载PDF
Representing Model Uncertainty by Multi-Stochastic Physics Approaches in the GRAPES Ensemble 被引量:4
17
作者 Zhizhen XU Jing CHEN +2 位作者 Zheng JIN Hongqi LI Fajing CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第4期328-346,共19页
To represent model uncertainties more comprehensively,a stochastically perturbed parameterization(SPP)scheme consisting of temporally and spatially varying perturbations of 18 parameters in the microphysics,convection... To represent model uncertainties more comprehensively,a stochastically perturbed parameterization(SPP)scheme consisting of temporally and spatially varying perturbations of 18 parameters in the microphysics,convection,boundary layer,and surface layer parameterization schemes,as well as the stochastically perturbed parameterization tendencies(SPPT)scheme,and the stochastic kinetic energy backscatter(SKEB)scheme,is applied in the Global and Regional Assimilation and Prediction Enhanced System-Regional Ensemble Prediction System(GRAPES-REPS)to evaluate and compare the general performance of various combinations of multiple stochastic physics schemes.Six experiments are performed for a summer month(1-30 June 2015)over China and multiple verification metrics are used.The results show that:(1)All stochastic experiments outperform the control(CTL)experiment,and all combinations of stochastic parameterization schemes perform better than the single SPP scheme,indicating that stochastic methods can effectively improve the forecast skill,and combinations of multiple stochastic parameterization schemes can better represent model uncertainties;(2)The combination of all three stochastic physics schemes(SPP,SPPT,and SKEB)outperforms any other combination of two schemes in precipitation forecasting and surface and upper-air verification to better represent the model uncertainties and improve the forecast skill;(3)Combining SKEB with SPP and/or SPPT results in a notable increase in the spread and reduction in outliers for the upper-air wind speed.SKEB directly perturbs the wind field and therefore its addition will greatly impact the upper-air wind-speed fields,and it contributes most to the improvement in spread and outliers for wind;(4)The introduction of SPP has a positive added value,and does not lead to large changes in the evolution of the kinetic energy(KE)spectrum at any wavelength;(5)The introduction of SPPT and SKEB would cause a 5%-10%and 30%-80%change in the KE of mesoscale systems,and all three stochastic schemes(SPP,SPPT,and SKEB)mainly affect the KE of mesoscale systems.This study indicates the potential of combining multiple stochastic physics schemes and lays a foundation for the future development and design of regional and global ensembles. 展开更多
关键词 ensemble prediction model uncertainty stochastically perturbed parameterization multi-stochastic PHYSICS APPROACHES
下载PDF
Assimilation of temporal-spatial leaf area index into the CERES-Wheat model with ensemble Kalman filter and uncertainty assessment for improving winter wheat yield estimation 被引量:5
18
作者 LI He JIANG Zhi-wei +3 位作者 CHEN Zhong-xin REN Jian-qiang LIU Bin Hasituya 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第10期2283-2299,共17页
To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) v... To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) values. The performances of the calibrated crop environment resource synthesis for wheat (CERES-Wheat) model for two different assimilation scenarios were compared by employing ensemble Kalman filter (EnKF)-based strategies. The uncertainty factors of the crop model data assimilation was analyzed by considering the observation errors, assimilation stages and temporal-spatial scales. Overalll the results indicated a better yield estimate performance when the EnKF-based strategy was used to comprehen- sively consider several factors in the initial conditions and observations. When using this strategy, an adjusted coefficients of determination (R2) of 0.84, a root mean square error (RMSE) of 323 kg ha-1, and a relative errors (RE) of 4.15% were obtained at the field plot scale and an R2 of 0.81, an RMSE of 362 kg ha-1, and an RE of 4.52% were obtained at the pixel scale of 30 mx30 m. With increasing observation errors, the accuracy of the yield estimates obviously decreased, but an acceptable estimate was observed when the observation errors were within 20%. Winter wheat yield estimates could be improved significantly by assimilating observations from the middle to the end of the crop growing seasons. With decreasing assimilation frequency and pixel resolution, the accuracy of the crop yield estimates decreased; however, the computation time decreased. It is important to consider reasonable temporal-spatial scales and assimilation stages to obtain tradeoffs between accuracy and computation time, especially in operational systems used for regional crop yield estimates. 展开更多
关键词 winter wheat yield estimates crop model data assimilation ensemble Kalman filter UNCERTAINTY leaf area index
下载PDF
Assimilation of Remote Sensing and Crop Model for LAI Estimation Based on Ensemble Kalman Filter 被引量:4
19
作者 LI Rui LI Cun-jun +4 位作者 DONG Ying-ying LIU Feng WANG Ji-hua YANG Xiao-dong PAN Yu-chun 《Agricultural Sciences in China》 CAS CSCD 2011年第10期1595-1602,共8页
Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only desi... Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kalman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the R2 reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production. 展开更多
关键词 crop model ASSIMILATION ensemble Kalman Filter algorithm leaf area index
下载PDF
Assimilating the along-track sea level anomaly into the regional ocean modeling system using the ensemble optimal interpolation 被引量:4
20
作者 LYU Guokun WANG Hui +3 位作者 ZHU Jiang WANG Dakui XIE Jiping LIU Guimei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第7期72-82,共11页
The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resol... The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models. 展开更多
关键词 ensemble optimal interpolation regional ocean modeling system along-track sea level anomaly South China Sea variability
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部