Iraq is part of West Asia and North Africa (WANA) region. The area is known as dry land, famous with gap of crop yield as a result of the water shortage problem. Six basins with total catchment area of 614.19 km2 at r...Iraq is part of West Asia and North Africa (WANA) region. The area is known as dry land, famous with gap of crop yield as a result of the water shortage problem. Six basins with total catchment area of 614.19 km2 at rain-fed of Northern Sinjar District (Iraq) had been chosen to investigate both of the potential of rainwater harvesting (RWH) and three supplemental irrigation (SI) scenarios S1, S2, and S3 (100%, 75%, and 50% of full irrigation requirement) to support the wheat yield (bread and durum) under various rainfall conditions for the study period 1990-2009. The results indicated that, the total volume of harvested runoff can be considered for irrigation practices, that reached up to 42.4, 25.1, 0.6, 10.9 (× 106 m3) during 1995-1996, 1996-1997, 1998-1999, and 2001-2002, respectively. The total irrigated area ranged between 10.9 - 5163.7 and 8.8 - 3595.7 (ha) for bread and durum wheat crop for the four selected seasons respectively. The yield scenarios for supplemental irrigation condition Y1, Y2, and Y3 give 68 - 9712, 94 - 12,999, and 105 - 22,806 Ton for bread wheat, and for durum wheat give 56 - 8035, 87 - 10,906, and 103 - 17,396 Ton.展开更多
Pre-harvest sprouting (PHS) occurs frequently in most of the wheat cultivation area worldwide, which severely reduces yield and end-use quality, resulting in substantial economic loss. In this study, quantitative tr...Pre-harvest sprouting (PHS) occurs frequently in most of the wheat cultivation area worldwide, which severely reduces yield and end-use quality, resulting in substantial economic loss. In this study, quantitative trait loci (QTL) for PHS resistance were mapped using an available high-density single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) genetic linkage map developed from a 269 recombinant inbred lines (RILs) population of Yanda 1817xBeinong 6. Using phenotypic data on two locations (Beijing and Shijiazhuang, China) in two years (2012 and 2013 harvesting seasons), five QTLs, designated as QPhs.cau-3A. 1, QPhs.cau-3A.2, QPhs.cau-5B, QPhs.cau-4A, and QPhs.cau-6A, for PHS (GP) were detected by inclusive composite interval mapping (ICIM) (LOD≥2.5). Two major QTLs, QPhs.cau-3A.2 and QPhs.cau-5B, were mapped on 3AL and 5BS chromosome arms, explaining 6.29-21.65% and 4.36-5.94% of the phenotypic variance, respectively. Precise mapping and comparative genomic analysis revealed that the TaVp-1A flanking region on 3AL is responsible for QPhs.cau-3A.2. SNP markers flanking QPhs.cau-3A.2 genomic region were developed and could be used for introgression of PHS tolerance into high yielding wheat varieties through marker-assisted selection (MAS).展开更多
A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE...A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE) and yield of winter wheat. Ridge-furrow tillage wasused, the ridge being mulched by plastic sheets for rainwater harvesting while seeding in thefurrows. Results showed that from sowing to reviving stage of winter wheat, water stored in 0-100 cm layer was significantly decreased whereas that in 100-200 cm layer did not change.Compared to the non-mulching, plastic mulch retained 6.5 mm more water as an average of the twoN rate treatments, having a certain effect on conservation of soil moisture. In contrast, atharvest, water was remarkably reduced in both the 0-100 cm and the 100-200 cm layers, andmulched plots consumed 34.8 mm more water as an average of the two treatments: low N rate (75kg N ha-1) with low plant density (2 300 000 plants ha-1) and high N rate (225 kg N ha-1)with highplant density (2 800 000 plants ha-1), in 0-200 cm layer than those without mulching, the formerbeing beneficial to plants in utilization of deep layer water. Mulching was significant inharvesting water and in increase of yield. Mulched with plastic sheets, biological and grainyields were 22.5 and 22.6% higher for the average of the high N rate than for the low N rate,and the high N rate with low plant density was 29.8 and 29.1% higher in both biological andgrain yields than that of the low N rate with low plant density. With high N rate and high plantdensity, the mulched biological and grain yields were 39.5 and 28.9% higher than the correspondingtreatments without mulching. Of the treatments, that with high N rate and low plant density wasthe highest in both biological and grain yields, and the water use efficiency reached 43.7 kgmm-1 ha-1 for biological yield and 22 kg mm-1 ha-1 for grain yield, being the highest WUE reportedin the world up to now.展开更多
Pre-harvest sprouting (PHS) reduces yields and grain quality, resulting in seriously economic losses in wheat. It has been showed that PHS is significantly correlated to seed dormancy levels. <em>FUSCA3</em&g...Pre-harvest sprouting (PHS) reduces yields and grain quality, resulting in seriously economic losses in wheat. It has been showed that PHS is significantly correlated to seed dormancy levels. <em>FUSCA3</em> (<em>FUS3</em>) gene is considered to be the key regulator of seed dormancy. However, little information is available about the function of <em>FUS3</em> gene (<em>TaFUS3</em>) in wheat. In this study, three homologous genes were identified in wheat grain, and their functions were investigated by gene silencing. Three full-length DNA (3477, 3534 and 3501 bp) and cDNA (1015, 1012 and 1015 bp) sequences encoding a B3 transcription factor, designated <em>TaFUS3-3A</em>, <em>TaFUS3-3B</em> and <em>TaFUS3-3D</em>, were first isolated from common wheat. The transcription of three <em>TaFUS3</em> genes in seed development and germination process was detected.<em> TaFUS3-3B</em> and<em> TaFUS3-3D</em> had similar expression profiles, and high levels of gene transcripts were detected in seeds at 25 DAP (days after pollination) and after 24 h of imbibition. However, the transcription of <em>TaFUS3-3A </em>was not detected. Silencing of <em>TaFUS3</em> in common wheat spikes resulted in increased seed germination and PHS. Compared with wild-type, the <em>TaFUS3</em>-silenced plants showed increased expression of genes related to GA biosynthesis and ABA metabolism, and decreased expression of genes associated with ABA biosynthesis. Moreover, silencing of <em>TaFUS3</em> in wheat plants led to a decrease in embryo sensitivity to ABA and changed the expression of genes involved in ABA signal transduction. The results of gene silencing indicated that<em> TaFUS3</em> plays a positive role in wheat seed dormancy and PHS-resistance, which might be associated with ABA, GA level and signal transduction.展开更多
Sowing cotton directly after harvesting wheat in the Yangtze River Valley of China requires early mature of cotton without yield reduction.Boll-setting period synchronisation and more yield bolls distributed at the up...Sowing cotton directly after harvesting wheat in the Yangtze River Valley of China requires early mature of cotton without yield reduction.Boll-setting period synchronisation and more yield bolls distributed at the upper and middle canopy layers are also required for harvesting.The objective of this study is to quantify the individual and interaction effects of plant density and plant growth regulator mepiquat chloride(MC)on temporal and spatial distributions of yield bolls,as well as yield and yield components.During the 2013–2016 cotton growing seasons,the experiments were conducted on a shortseason cotton cultivar CRRI50 at Yangzhou University,China.Various combinations of plant density(12.0,13.5 and 15.0 plants m^(–2))and MC dose(180,270 and 360 g ha^(–1))were applied on cotton plants.The combination of 13.5 plants m^(–2)and 270 g ha^(–1)MC resulted in the greatest boll number per unit area,the highest daily boll setting number and more than 90%of bolls positioned within 45–80 cm above the ground.In conclusion,appropriate MC dose in combination of high plant density could synchronize boll-setting period and retain more bolls at the upper and middle canopy layers without yield reduction in the system of direct-seeded cotton after wheat harvest,and thus overcome the labor-intensive problem in current transplanting cropping system.展开更多
为精确监测和评估小麦在成熟期受连阴雨胁迫后穗霉变发芽情况。该研究以2023年5月底黄淮西部一次大范围连阴雨天气过程为例,从气象致灾危险性和遥感变量表征小麦承灾能力两方面,综合应用气象和多源卫星遥感资料,构建模型因子。分别用Spe...为精确监测和评估小麦在成熟期受连阴雨胁迫后穗霉变发芽情况。该研究以2023年5月底黄淮西部一次大范围连阴雨天气过程为例,从气象致灾危险性和遥感变量表征小麦承灾能力两方面,综合应用气象和多源卫星遥感资料,构建模型因子。分别用Spearman和Pearson相关性分析,以及ReliefF特征选择方法进行关键因子筛选,形成3组因子,分别应用Logistic回归等5种分类器和多元线性回归等5种回归方法构建模型,实现了对灾变的精准识别、程度分级和指数回归预测。通过对不同模型性能评估和各因子影响的对比分析,结果表明:所选分类器在气象与遥感因子协同及各独自建模情形下,均能识别穗发芽霉变并准确预测其等级,识别的准确率(accuracy,AC)在0.649~0.811,等级预测的AC在0.432~0.622之间;在穗发芽霉变指数(ear germination and moldiness index,EGMI)预测方面,构建的PCFXGBR模型表现最佳,R^(2)为0.25,均方根误差(root mean square error,RMSE)为15.68,平均绝对误差(mean absolute error,MAE)为11.93。研究发现,遥感模型在灾变识别上更具优势,而气象模型在灾变程度分级上更优,结合两者的气象-遥感协同模型性能最佳。该研究成果为小麦连阴雨减损与灾后评估提供了有力的技术支持。展开更多
针对西北绿洲灌区小麦连作普遍、化肥施用量较大及氮素利用率低等问题,探究麦后复种绿肥对减量施氮小麦籽粒产量和氮素利用的补偿效应,以期为构建减氮小麦高效生产技术提供理论依据。本研究依托始于2018年的定位试验进行,2020-2022年期...针对西北绿洲灌区小麦连作普遍、化肥施用量较大及氮素利用率低等问题,探究麦后复种绿肥对减量施氮小麦籽粒产量和氮素利用的补偿效应,以期为构建减氮小麦高效生产技术提供理论依据。本研究依托始于2018年的定位试验进行,2020-2022年期间采集数据。试验采用裂区设计,主区设4种绿肥种植模式,即麦后分别复种毛叶苕子混播箭筈豌豆(HCV)、箭筈豌豆(CV)、油菜(R)和麦后休闲(F);副区为3种施氮水平:试区习惯施氮量(N3,180 kg hm^(–2))、习惯施氮减量20%(N2,144 kg hm^(-2))、习惯施氮减量40%(N1,108 kg hm^(-2))。研究表明,习惯施氮减量20%和40%显著降低了小麦籽粒产量和氮素吸收,但麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的籽粒产量和氮素吸收损失,且麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高小麦籽粒产量21.4%和氮素吸收6.9%(P<0.05)。麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的氮素利用率损失,且其结合减量施氮20%氮素利用率提高13.4%(P<0.05)。其补偿机制归因于:(1)麦后复种毛叶苕子混播箭筈豌豆在减量施氮40%条件下可补偿小麦氮素吸收速率,提高氮素净同化速率34.3%(P<0.05),维持穗部氮素分配,增加茎氮素转运率6.6%(P<0.05)。(2)与麦后休闲传统施氮量相比,麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高氮素平均吸收速率和氮素净同化速率7.2%和34.1%(P<0.05),增加灌浆初期至成熟期穗氮素分配6.7%(P<0.05),提高叶、茎氮素对穗的转运贡献率17.8%、8.9%(P<0.05)。因此,在干旱绿洲灌区,麦后复种毛叶苕子混播箭筈豌豆是实现小麦减氮40%的可行措施,麦后复种毛叶苕子混播箭筈豌豆结合减氮20%可通过提高小麦氮素吸收速率和氮素净同化率,提高叶、茎对穗的转运贡献率从而促进穗部氮素分配,实现小麦产量和氮素利用率双提升。展开更多
文摘Iraq is part of West Asia and North Africa (WANA) region. The area is known as dry land, famous with gap of crop yield as a result of the water shortage problem. Six basins with total catchment area of 614.19 km2 at rain-fed of Northern Sinjar District (Iraq) had been chosen to investigate both of the potential of rainwater harvesting (RWH) and three supplemental irrigation (SI) scenarios S1, S2, and S3 (100%, 75%, and 50% of full irrigation requirement) to support the wheat yield (bread and durum) under various rainfall conditions for the study period 1990-2009. The results indicated that, the total volume of harvested runoff can be considered for irrigation practices, that reached up to 42.4, 25.1, 0.6, 10.9 (× 106 m3) during 1995-1996, 1996-1997, 1998-1999, and 2001-2002, respectively. The total irrigated area ranged between 10.9 - 5163.7 and 8.8 - 3595.7 (ha) for bread and durum wheat crop for the four selected seasons respectively. The yield scenarios for supplemental irrigation condition Y1, Y2, and Y3 give 68 - 9712, 94 - 12,999, and 105 - 22,806 Ton for bread wheat, and for durum wheat give 56 - 8035, 87 - 10,906, and 103 - 17,396 Ton.
基金financially supported by the National Natural Science Foundation of China (31271710,31301312)
文摘Pre-harvest sprouting (PHS) occurs frequently in most of the wheat cultivation area worldwide, which severely reduces yield and end-use quality, resulting in substantial economic loss. In this study, quantitative trait loci (QTL) for PHS resistance were mapped using an available high-density single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) genetic linkage map developed from a 269 recombinant inbred lines (RILs) population of Yanda 1817xBeinong 6. Using phenotypic data on two locations (Beijing and Shijiazhuang, China) in two years (2012 and 2013 harvesting seasons), five QTLs, designated as QPhs.cau-3A. 1, QPhs.cau-3A.2, QPhs.cau-5B, QPhs.cau-4A, and QPhs.cau-6A, for PHS (GP) were detected by inclusive composite interval mapping (ICIM) (LOD≥2.5). Two major QTLs, QPhs.cau-3A.2 and QPhs.cau-5B, were mapped on 3AL and 5BS chromosome arms, explaining 6.29-21.65% and 4.36-5.94% of the phenotypic variance, respectively. Precise mapping and comparative genomic analysis revealed that the TaVp-1A flanking region on 3AL is responsible for QPhs.cau-3A.2. SNP markers flanking QPhs.cau-3A.2 genomic region were developed and could be used for introgression of PHS tolerance into high yielding wheat varieties through marker-assisted selection (MAS).
基金part of the projects(49890330,30230230 and 30070429)supported by the National Natural Science Foundation of China(NSFC)project(G1999011707)supported by the National Key Basic Research Support Funds,China(NKBRSF).
文摘A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE) and yield of winter wheat. Ridge-furrow tillage wasused, the ridge being mulched by plastic sheets for rainwater harvesting while seeding in thefurrows. Results showed that from sowing to reviving stage of winter wheat, water stored in 0-100 cm layer was significantly decreased whereas that in 100-200 cm layer did not change.Compared to the non-mulching, plastic mulch retained 6.5 mm more water as an average of the twoN rate treatments, having a certain effect on conservation of soil moisture. In contrast, atharvest, water was remarkably reduced in both the 0-100 cm and the 100-200 cm layers, andmulched plots consumed 34.8 mm more water as an average of the two treatments: low N rate (75kg N ha-1) with low plant density (2 300 000 plants ha-1) and high N rate (225 kg N ha-1)with highplant density (2 800 000 plants ha-1), in 0-200 cm layer than those without mulching, the formerbeing beneficial to plants in utilization of deep layer water. Mulching was significant inharvesting water and in increase of yield. Mulched with plastic sheets, biological and grainyields were 22.5 and 22.6% higher for the average of the high N rate than for the low N rate,and the high N rate with low plant density was 29.8 and 29.1% higher in both biological andgrain yields than that of the low N rate with low plant density. With high N rate and high plantdensity, the mulched biological and grain yields were 39.5 and 28.9% higher than the correspondingtreatments without mulching. Of the treatments, that with high N rate and low plant density wasthe highest in both biological and grain yields, and the water use efficiency reached 43.7 kgmm-1 ha-1 for biological yield and 22 kg mm-1 ha-1 for grain yield, being the highest WUE reportedin the world up to now.
文摘Pre-harvest sprouting (PHS) reduces yields and grain quality, resulting in seriously economic losses in wheat. It has been showed that PHS is significantly correlated to seed dormancy levels. <em>FUSCA3</em> (<em>FUS3</em>) gene is considered to be the key regulator of seed dormancy. However, little information is available about the function of <em>FUS3</em> gene (<em>TaFUS3</em>) in wheat. In this study, three homologous genes were identified in wheat grain, and their functions were investigated by gene silencing. Three full-length DNA (3477, 3534 and 3501 bp) and cDNA (1015, 1012 and 1015 bp) sequences encoding a B3 transcription factor, designated <em>TaFUS3-3A</em>, <em>TaFUS3-3B</em> and <em>TaFUS3-3D</em>, were first isolated from common wheat. The transcription of three <em>TaFUS3</em> genes in seed development and germination process was detected.<em> TaFUS3-3B</em> and<em> TaFUS3-3D</em> had similar expression profiles, and high levels of gene transcripts were detected in seeds at 25 DAP (days after pollination) and after 24 h of imbibition. However, the transcription of <em>TaFUS3-3A </em>was not detected. Silencing of <em>TaFUS3</em> in common wheat spikes resulted in increased seed germination and PHS. Compared with wild-type, the <em>TaFUS3</em>-silenced plants showed increased expression of genes related to GA biosynthesis and ABA metabolism, and decreased expression of genes associated with ABA biosynthesis. Moreover, silencing of <em>TaFUS3</em> in wheat plants led to a decrease in embryo sensitivity to ABA and changed the expression of genes involved in ABA signal transduction. The results of gene silencing indicated that<em> TaFUS3</em> plays a positive role in wheat seed dormancy and PHS-resistance, which might be associated with ABA, GA level and signal transduction.
基金supported by the National Key Research and Development Program of China(2018YFD1000900)the Natural Science Foundation of Jiangsu Higher Education Institution,China(18KJB210013 and 17KJA210003)the Natural Science Foundation of Jiangsu Province,China(BK20191439)。
文摘Sowing cotton directly after harvesting wheat in the Yangtze River Valley of China requires early mature of cotton without yield reduction.Boll-setting period synchronisation and more yield bolls distributed at the upper and middle canopy layers are also required for harvesting.The objective of this study is to quantify the individual and interaction effects of plant density and plant growth regulator mepiquat chloride(MC)on temporal and spatial distributions of yield bolls,as well as yield and yield components.During the 2013–2016 cotton growing seasons,the experiments were conducted on a shortseason cotton cultivar CRRI50 at Yangzhou University,China.Various combinations of plant density(12.0,13.5 and 15.0 plants m^(–2))and MC dose(180,270 and 360 g ha^(–1))were applied on cotton plants.The combination of 13.5 plants m^(–2)and 270 g ha^(–1)MC resulted in the greatest boll number per unit area,the highest daily boll setting number and more than 90%of bolls positioned within 45–80 cm above the ground.In conclusion,appropriate MC dose in combination of high plant density could synchronize boll-setting period and retain more bolls at the upper and middle canopy layers without yield reduction in the system of direct-seeded cotton after wheat harvest,and thus overcome the labor-intensive problem in current transplanting cropping system.
文摘为精确监测和评估小麦在成熟期受连阴雨胁迫后穗霉变发芽情况。该研究以2023年5月底黄淮西部一次大范围连阴雨天气过程为例,从气象致灾危险性和遥感变量表征小麦承灾能力两方面,综合应用气象和多源卫星遥感资料,构建模型因子。分别用Spearman和Pearson相关性分析,以及ReliefF特征选择方法进行关键因子筛选,形成3组因子,分别应用Logistic回归等5种分类器和多元线性回归等5种回归方法构建模型,实现了对灾变的精准识别、程度分级和指数回归预测。通过对不同模型性能评估和各因子影响的对比分析,结果表明:所选分类器在气象与遥感因子协同及各独自建模情形下,均能识别穗发芽霉变并准确预测其等级,识别的准确率(accuracy,AC)在0.649~0.811,等级预测的AC在0.432~0.622之间;在穗发芽霉变指数(ear germination and moldiness index,EGMI)预测方面,构建的PCFXGBR模型表现最佳,R^(2)为0.25,均方根误差(root mean square error,RMSE)为15.68,平均绝对误差(mean absolute error,MAE)为11.93。研究发现,遥感模型在灾变识别上更具优势,而气象模型在灾变程度分级上更优,结合两者的气象-遥感协同模型性能最佳。该研究成果为小麦连阴雨减损与灾后评估提供了有力的技术支持。
文摘针对西北绿洲灌区小麦连作普遍、化肥施用量较大及氮素利用率低等问题,探究麦后复种绿肥对减量施氮小麦籽粒产量和氮素利用的补偿效应,以期为构建减氮小麦高效生产技术提供理论依据。本研究依托始于2018年的定位试验进行,2020-2022年期间采集数据。试验采用裂区设计,主区设4种绿肥种植模式,即麦后分别复种毛叶苕子混播箭筈豌豆(HCV)、箭筈豌豆(CV)、油菜(R)和麦后休闲(F);副区为3种施氮水平:试区习惯施氮量(N3,180 kg hm^(–2))、习惯施氮减量20%(N2,144 kg hm^(-2))、习惯施氮减量40%(N1,108 kg hm^(-2))。研究表明,习惯施氮减量20%和40%显著降低了小麦籽粒产量和氮素吸收,但麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的籽粒产量和氮素吸收损失,且麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高小麦籽粒产量21.4%和氮素吸收6.9%(P<0.05)。麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的氮素利用率损失,且其结合减量施氮20%氮素利用率提高13.4%(P<0.05)。其补偿机制归因于:(1)麦后复种毛叶苕子混播箭筈豌豆在减量施氮40%条件下可补偿小麦氮素吸收速率,提高氮素净同化速率34.3%(P<0.05),维持穗部氮素分配,增加茎氮素转运率6.6%(P<0.05)。(2)与麦后休闲传统施氮量相比,麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高氮素平均吸收速率和氮素净同化速率7.2%和34.1%(P<0.05),增加灌浆初期至成熟期穗氮素分配6.7%(P<0.05),提高叶、茎氮素对穗的转运贡献率17.8%、8.9%(P<0.05)。因此,在干旱绿洲灌区,麦后复种毛叶苕子混播箭筈豌豆是实现小麦减氮40%的可行措施,麦后复种毛叶苕子混播箭筈豌豆结合减氮20%可通过提高小麦氮素吸收速率和氮素净同化率,提高叶、茎对穗的转运贡献率从而促进穗部氮素分配,实现小麦产量和氮素利用率双提升。