The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algo...The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.展开更多
An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly hand...An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly handle the case of the fast moving targets in high squint geometry.As for the issue,the analytical expression for the two Dimensional(2-D)signal spectrum of moving targets is derived and a fast raw echo simulation method is proposed in this study.The proposed simulator can accommodate the moving targets in the high squint geometry,whose processing steps of the simulation are given in detail and its computational complexity is analyzed.The simulation data for static and moving targets are processed and analyzed,and the results are given to validate the effectiveness of the proposed approach.展开更多
In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line sp...In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line spectrum and background noise,a weighted line spectrum detection algorithm based on the phase variance is proposed in frequency domain.After phase difference alignment,the phase variance of line spectrum and the phase of background noise,respectively,are small and big in frequency domain,this method utilizes the weighted statistical algorithm to cumulate the frequency spectrum based on the phase variance,which can restrain the background noise disturbance,and enhance the signal to noise ratio(SNR).The theory analysis and experimental results both verify that the proposed method can well enhance the energy of line spectrum,restrain the energy of background noise,and have better detection performance under lower SNR.展开更多
Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses accordin...Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations.展开更多
To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum...To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.展开更多
Performance of traditional adaptive line enhancer (ALE) in suppressing Gaussian noise is low and can get worse at low input signal-to-noise ratio(SNR). For greatly overcoming these disadvantages, feature of fourth...Performance of traditional adaptive line enhancer (ALE) in suppressing Gaussian noise is low and can get worse at low input signal-to-noise ratio(SNR). For greatly overcoming these disadvantages, feature of fourth-order cumulant (FOC) different slices for quasi-stationary random process is analyzed, fourth order cumulant(FOC) different slice-based adaptive dynamic line enhancer is presented, and output SNR of the proposed enhancer is derived and bigger than that of the ALE via theoretical analysis. Simulation tests with the underwater moving target-radiated data have shown that the proposed enhancer outperforms the ALE in suppressing Gaussian noise and enhancing dynamic line spectrum feature.展开更多
In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)in...In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.展开更多
Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection syste...Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.展开更多
Neutron spectra of Be(d,n) reaction were measured for deuteron energies from 13.5 to 22 MeV by using a stilbene scintillator detector and flight time technique.A special calibration method of neutron detector efficien...Neutron spectra of Be(d,n) reaction were measured for deuteron energies from 13.5 to 22 MeV by using a stilbene scintillator detector and flight time technique.A special calibration method of neutron detector efficiency for higher energy portion was adopted. The spectral neutron yield per unit beam charge on the Be target at 0° was determined. The fluence-averaged mean neutron energies of the neutron spectra are given as a function of the incident energy for several thresholds. The measured neutron spectra have an almost same shape at different incident deuteron energies. High energy portion (En】1.8MeV) and low energy portion (En【2.0MeV)of the neutron spectra were separately measured and they were concerned with each other by normalization. The energy range of whole neutron spectra is 0.7 MeV to 30MeV.展开更多
Deuteron-driven spallation targets have garnered attention recently because they can provide high-energy neutrons to transmute long-lifetime fission products.In this study,the Geant4 toolkit was used to simulate the i...Deuteron-driven spallation targets have garnered attention recently because they can provide high-energy neutrons to transmute long-lifetime fission products.In this study,the Geant4 toolkit was used to simulate the inter-action between a deuteron beam at 500 MeV and a com-posite target composed of alternating lead-bismuth eutectic(LBE)and water.The water was used because it may be employed as a target coolant.The energy spectrum,neu-tron yield,average energy,and total energy of the emitted neutrons were calculated for different thicknesses and thickness ratios between the LBE and water.For a constant target thickness,the neutron yield increases with an increasing thickness ratio of LBE to H 2 O,while the aver-age energy of the emitted neutrons decreases with an increasing in the aforementioned thickness ratio.These two aspects support the use of a pure target,either LBE or water.However,with an increasing LBE-to-H 2 O thickness ratio,the total energy of the emitted neutrons increases and then decreases.This result supports the addition of water into the LBE target.The angular distributions of the emitted neutrons show that the rear of the target is suit-able for loading nuclear waste containing minor actinides and long-lifetime fission products.展开更多
With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually ...With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.展开更多
A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV...A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.展开更多
基金This project was supported by the Defense Pre-Research Project of the‘Tenth Five-Year-Plan’of China (40105010101)
文摘The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.
文摘An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly handle the case of the fast moving targets in high squint geometry.As for the issue,the analytical expression for the two Dimensional(2-D)signal spectrum of moving targets is derived and a fast raw echo simulation method is proposed in this study.The proposed simulator can accommodate the moving targets in the high squint geometry,whose processing steps of the simulation are given in detail and its computational complexity is analyzed.The simulation data for static and moving targets are processed and analyzed,and the results are given to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61372180)the Young Talent Frontier Project of Institute of Acoustics of Chinese Academy of Sciences(Y454341261)
文摘In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line spectrum and background noise,a weighted line spectrum detection algorithm based on the phase variance is proposed in frequency domain.After phase difference alignment,the phase variance of line spectrum and the phase of background noise,respectively,are small and big in frequency domain,this method utilizes the weighted statistical algorithm to cumulate the frequency spectrum based on the phase variance,which can restrain the background noise disturbance,and enhance the signal to noise ratio(SNR).The theory analysis and experimental results both verify that the proposed method can well enhance the energy of line spectrum,restrain the energy of background noise,and have better detection performance under lower SNR.
基金National Natural Science Foundation of Hebei Province under Grant No.E2020202038the National Natural Science Foundation of China under Grant No.51778206。
文摘Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201701D221017,201901D211242)。
文摘To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.
文摘Performance of traditional adaptive line enhancer (ALE) in suppressing Gaussian noise is low and can get worse at low input signal-to-noise ratio(SNR). For greatly overcoming these disadvantages, feature of fourth-order cumulant (FOC) different slices for quasi-stationary random process is analyzed, fourth order cumulant(FOC) different slice-based adaptive dynamic line enhancer is presented, and output SNR of the proposed enhancer is derived and bigger than that of the ALE via theoretical analysis. Simulation tests with the underwater moving target-radiated data have shown that the proposed enhancer outperforms the ALE in suppressing Gaussian noise and enhancing dynamic line spectrum feature.
基金supported by the Natural Science Foundation of Sichuan Province of China under Grant No.2022NSFSC40574partially supported by the National Natural Science Foundation of China under Grants No.61571096 and No.61775030.
文摘In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.
基金Supported by the National“863”Project of China(2010AA10A301)National Technology Support Project for the 12th Five-year Plan(2011BAD20B07)
文摘Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.
文摘Neutron spectra of Be(d,n) reaction were measured for deuteron energies from 13.5 to 22 MeV by using a stilbene scintillator detector and flight time technique.A special calibration method of neutron detector efficiency for higher energy portion was adopted. The spectral neutron yield per unit beam charge on the Be target at 0° was determined. The fluence-averaged mean neutron energies of the neutron spectra are given as a function of the incident energy for several thresholds. The measured neutron spectra have an almost same shape at different incident deuteron energies. High energy portion (En】1.8MeV) and low energy portion (En【2.0MeV)of the neutron spectra were separately measured and they were concerned with each other by normalization. The energy range of whole neutron spectra is 0.7 MeV to 30MeV.
基金supported by the National Natural Science Foundation of China(No.11875328).
文摘Deuteron-driven spallation targets have garnered attention recently because they can provide high-energy neutrons to transmute long-lifetime fission products.In this study,the Geant4 toolkit was used to simulate the inter-action between a deuteron beam at 500 MeV and a com-posite target composed of alternating lead-bismuth eutectic(LBE)and water.The water was used because it may be employed as a target coolant.The energy spectrum,neu-tron yield,average energy,and total energy of the emitted neutrons were calculated for different thicknesses and thickness ratios between the LBE and water.For a constant target thickness,the neutron yield increases with an increasing thickness ratio of LBE to H 2 O,while the aver-age energy of the emitted neutrons decreases with an increasing in the aforementioned thickness ratio.These two aspects support the use of a pure target,either LBE or water.However,with an increasing LBE-to-H 2 O thickness ratio,the total energy of the emitted neutrons increases and then decreases.This result supports the addition of water into the LBE target.The angular distributions of the emitted neutrons show that the rear of the target is suit-able for loading nuclear waste containing minor actinides and long-lifetime fission products.
基金supported by the National Natural Science Foundation of China (62101603)the Shenzhen Science and Technology Program(KQTD20190929172704911)+3 种基金the Aeronautical Science Foundation of China (2019200M1001)the National Nature Science Foundation of Guangdong (2021A1515011979)the Guangdong Key Laboratory of Advanced IntelliSense Technology (2019B121203006)the Pearl R iver Talent Recruitment Program (2019ZT08X751)。
文摘With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.
文摘A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.