In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s...In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.展开更多
This article employs a combined approach of biology and economics to reveal that biological evolution has an economic nature, evolving towards improved energy efficiency. The orthodox Darwinian theory of evolution des...This article employs a combined approach of biology and economics to reveal that biological evolution has an economic nature, evolving towards improved energy efficiency. The orthodox Darwinian theory of evolution describes evolution as the random variation of organisms and their survival through natural selection. In fact, the natural environment itself is a constantly changing context, and the strategy to adapt to this change is to enhance behavioral capabilities, thereby expanding the range and dimensions of behavior. Therefore, the improvement of behavioral capabilities is an important aspect of evolution. The enhancement of behavioral capabilities expands the range of adaptation to the natural environment and increases the space for behavioral choices. Within this space of behavioral choices, some options are more effective and superior to others;thus, the ability to select is necessary to make the improved behavioral capabilities more beneficial to the organism itself. The birth and development of the brain serve the purpose of selection. By using the brain to make selections, at least the “better” behavior will be chosen between two alternatives. Once the better behavior yields better results, and the organism can associate these results with the corresponding behavior, it will persist in this behavior. The persistent repetition of a behavior over generations will form a habit. Habits passed down through generations constitute a new environment, causing the organism’s genes to activate or deactivate certain functions, ultimately leading to genetic changes that are beneficial to that habit. Since the brain’s selection represents the organism’s self-selection, it differs from random variation;it is also a rational selection, choosing behaviors that either obtain more energy or reduce energy consumption. Thus, this evolution possesses an economic nature.展开更多
Nest site selection is a vital component of bird reproduction success,and an adaptive behavior conducted to decrease nest predation risk with avoiding external disturbances.Understanding patterns of nest site selectio...Nest site selection is a vital component of bird reproduction success,and an adaptive behavior conducted to decrease nest predation risk with avoiding external disturbances.Understanding patterns of nest site selection can provide insights into how species adapt to changes in their habitat and has important conservation implications.In this study,we used microhabitat variables and multi-scale data with a field survey of nest occurrence to determine nest site selection patterns and adaptive strategies of the breeding Oriental Storks(Ciconia boyciana)in different nest areas.Results demonstrate that the nest site microhabitat characteristics of the breeding Oriental Storks significantly differed among the three nesting areas,and nest height was higher in the middle and lower Yangtze River floodplain than in the Northeast China and Bohai Bay nest areas.The food resources and intensity of human disturbance had the greatest effects on the nest site selection of the breeding Oriental Storks.The intensity of human disturbance was positively correlated with the nest height of the breeding Oriental Storks in Bohai Bay and the middle and lower Yangtze River floodplain;however,nest height decreased with the abundance of food resources in the Northeast China nest area.Our findings indicate that the nest site selection patterns of Oriental Storks showed flexible adaptive strategies.In safer environments,nests were lower and closer to food resources,which allows parent storks to invest more in the nestlings.However,in areas where human activity was intense,nests were higher to ensure the safety of their offspring.Some measures that could be taken to improve the breeding habitat of Oriental Storks include increasing the percentage of wetland areas in nesting areas to enhance food resources availability and setting artificial nests at suitable heights in potential nesting grounds to encourage nesting.Finally,the establishment of soft barriers around the nesting areas could increase the safety of nests.展开更多
Next-generation sequencing technology has transformed our ability to assess the taxonomic composition functions of host-associated microbiota and microbiomes. More human microbiome research projects—particularly thos...Next-generation sequencing technology has transformed our ability to assess the taxonomic composition functions of host-associated microbiota and microbiomes. More human microbiome research projects—particularly those that explore genomic mutations within the microbiome—will be launched in the next decade. This review focuses on the coevolution of microbes within a microbiome, which shapes strain-level diversity both within and between host species. We also explore the correlation between microbial genomic mutations and common metabolic diseases, and the adaptive evolution of pathogens and probiotics during invasion and colonization. Finally, we discuss advances in methods and algorithms for annotating and analyzing microbial genomic mutations.展开更多
The harmonic balance method(HBM)is one of the most widely used methods in solving nonlinear vibration problems,and its accuracy and computational efficiency largely depend on the number of the harmonics selected.The a...The harmonic balance method(HBM)is one of the most widely used methods in solving nonlinear vibration problems,and its accuracy and computational efficiency largely depend on the number of the harmonics selected.The adaptive harmonic balance(AHB)method is an improved HBM method.This paper presents a modified AHB method with the asymptotic harmonic selection(AHS)procedure.This new harmonic selection procedure selects harmonics from the frequency spectra of nonlinear terms instead of estimating the contribution of each harmonic to the whole nonlinear response,by which the additional calculation is avoided.A modified continuation method is proposed to deal with the variable size of nonlinear algebraic equations at different values of path parameters,and then all solution branches of the amplitude-frequency response are obtained.Numerical experiments are carried out to verify the performance of the AHB-AHS method.Five typical nonlinear dynamic equations with different types of nonlinearities and excitations are chosen as the illustrative examples.Compared with the classical HBM and Runge-Kutta methods,the proposed AHB-AHS method is of higher accuracy and better convergence.The AHB-AHS method proposed in this paper has the potential to investigate the nonlinear vibrations of complex high-dimensional nonlinear systems.展开更多
CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferrin...CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.展开更多
With the rapid development of DNA technologies, high throughput genomic data have become a powerful leverage to locate desirable genetic loci associated with traits of importance in various crop species. However, curr...With the rapid development of DNA technologies, high throughput genomic data have become a powerful leverage to locate desirable genetic loci associated with traits of importance in various crop species. However, current genetic association mapping analyses are focused on identifying individual QTLs. This study aimed to identify a set of QTLs or genetic markers, which can capture genetic variability for marker-assisted selection. Selecting a set with k loci that can maximize genetic variation out of high throughput genomic data is a challenging issue. In this study, we proposed an adaptive sequential replacement (ASR) method, which is considered a variant of the sequential replacement (SR) method. Through Monte Carlo simulation and comparing with four other selection methods: exhaustive, SR method, forward, and backward methods we found that the ASR method sustains consistent and repeatable results comparable to the exhaustive method with much reduced computational intensity.展开更多
Background Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones.Nevertheless,the mechanisms by which these signatures...Background Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones.Nevertheless,the mechanisms by which these signatures contribute to phenotypic diversity and facilitate environmental adaptation remain unclear.Results Here,we leveraged whole-genome sequencing data from 82 individuals from 6 domestic pig breeds originating in tropical,high-altitude,and frigid regions.Population genetic analysis suggested that habitat isolation significantly shaped the genetic diversity and contributed to population stratification in local Chinese pig breeds.Analysis of selection signals revealed regions under selection for adaptation in tropical(55.5 Mb),high-altitude(43.6 Mb),and frigid(17.72 Mb)regions.The potential functions of the selective sweep regions were linked to certain complex traits that might play critical roles in different geographic environments,including fat coverage in frigid environments and blood indicators in tropical and high-altitude environments.Candidate genes under selection were significantly enriched in biological pathways involved in environmental adaptation.These pathways included blood circulation,protein degradation,and inflammation for adaptation to tropical environments;heart and lung development,hypoxia response,and DNA damage repair for high-altitude adaptation;and thermogenesis,cold-induced vasodilation(CIVD),and the cell cycle for adaptation to frigid environments.By examining the chromatin state of the selection signatures,we identified the lung and ileum as two candidate functional tissues for environmental adaptation.Finally,we identified a mutation(chr1:G246,175,129A)in the cis-regulatory region of ABCA1 as a plausible promising variant for adaptation to tropical environments.Conclusions In this study,we conducted a genome-wide exploration of the genetic mechanisms underlying the adaptability of local Chinese pig breeds to tropical,high-altitude,and frigid environments.Our findings shed light on the prominent role of cis-regulatory elements in environmental adaptation in pigs and may serve as a valuable biological model of human plateau-related disorders and cardiovascular diseases.展开更多
Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4))...Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.展开更多
Background The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by,and formed due to,past and current admixture events.Adaptation to diverse env...Background The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by,and formed due to,past and current admixture events.Adaptation to diverse environments,including acclimation to harsh climatic conditions,has also left selection footprints in breed genomes.Results Using the Chicken 50K_CobbCons SNP chip,we genotyped four divergently selected breeds:two aboriginal,cold tolerant Ushanka and Orloff Mille Fleur,one egg-type Russian White subjected to artificial selection for cold tolerance,and one meat-type White Cornish.Signals of selective sweeps were determined in the studied breeds using three methods:(1)assessment of runs of homozygosity islands,(2)F_(ST) based population differential analysis,and(3)haplotype differentiation analysis.Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds.In these regions,we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies.Amongst them,SOX5,ME3,ZNF536,WWP1,RIPK2,OSGIN2,DECR1,TPO,PPARGC1A,BDNF,MSTN,and beta-keratin genes can be especially mentioned as candidates for cold adaptation.Epigenetic factors may be involved in regulating some of these important genes(e.g.,TPO and BDNF).Conclusion Based on a genome-wide scan,our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds.These include genes representing the sine qua non for adaptation to harsh environments.Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals,and this warrants further investigation.展开更多
Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named...Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution.展开更多
The theory of ecological speciation suggests that assortative mating evolves most easily when mating preferences aredirectly linked to ecological traits that are subject to divergent selection. Sensory adaptation can ...The theory of ecological speciation suggests that assortative mating evolves most easily when mating preferences aredirectly linked to ecological traits that are subject to divergent selection. Sensory adaptation can play a major role in this process,because selective mating is often mediated by sexual signals: bright colours, complex song, pheromone blends and so on. Whendivergent sensory adaptation affects the perception of such signals, mating patterns may change as an immediate consequence.Alternatively, mating preferences can diverge as a result of indirect effects: assortative mating may be promoted by selectionagainst intermediate phenotypes that are maladapted to their (sensory) environment. For Lake Victoria cichlids, the visual environmentconstitutes an important selective force that is heterogeneous across geographical and water depth gradients. We investigatethe direct and indirect effects of this heterogeneity on the evolution of female preferences for alternative male nuptial colours(red and blue) in the genus Pundamilia. Here, we review the current evidence for divergent sensory drive in this system, extractgeneral principles, and discuss future perspectives [Current Zoology 56 (3): 285-299, 2010].展开更多
To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-...To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle.First,the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine,and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset.Second,according to the lane-changing intention and collision threat of the preceding vehicle,the target vehicle selection algorithm is studied under three different conditions:safe lane-changing,dangerous lane-changing,and lane-changing cancellation.Finally,the effectiveness of the proposed algorithm is verified in a co-simulation platform.The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver.In the case of a dangerous lane change,the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system;thus,it can effectively avoid collisions and improve the safety of the subject vehicle.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-...Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-hard and is neither sub-modular nor super-modular. Furthermore, in the case of the Kalman filter(KF) fusion algorithm, accurate statistical characteristics of noise are difficult to obtain, and this leads to an unsatisfactory fusion result. To settle the referred cases, a distributed and adaptive weighted fusion algorithm based on KF has been proposed in this paper. In this method, on the basis of the pseudo prior probability of the estimated state of each source, the reliability of the sources is evaluated and the optimal set is selected on a certain threshold. Experiments were performed on multi-source pedestrian dead reckoning for verifying the proposed algorithm. The results obtained from these experiments indicate that the optimal set can be selected accurately with minimal computation, and the fusion error is reduced by 16.6% as compared to the corresponding value resulting from the algorithm without improvements.The proposed adaptive source reliability and fusion weight evaluation is effective against the varied-noise multi-source fusion system, and the fusion error caused by inaccurate statistical characteristics of the noise is reduced by the adaptive weight evaluation.The proposed algorithm exhibits good robustness, adaptability,and value on applications.展开更多
The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the...The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise.展开更多
A basic assumption of most recently proposed waveform design algorithms is that the target impulse response is a known deterministic function or a stochastic process with a known power spectral density (PSD). Howeve...A basic assumption of most recently proposed waveform design algorithms is that the target impulse response is a known deterministic function or a stochastic process with a known power spectral density (PSD). However, it is well-known that a target impulse response is neither easily nor accurately obtained; besides it changes sharply with attitude angles. Both of the aforementioned cases complicate the waveform design process. In this paper, an adaptive robust waveform selection method for unknown target detection in clutter is proposed. The target impulse response is considered to be unknown but belongs to a known uncertainty set. An adaptive waveform library is devised by using a signal-to-clutter-plus-noise ratio (SCNR)- based optimal waveform design method. By applying the minimax robust waveform selection method, the optimal robust waveform is selected to ensure the lowest performance bound of the unknown target detection in clutter. Results show that the adaptive waveform library outperforms the predefined linear frequency modulation (LFM) waveform library on the SCNR bound.展开更多
Recently manifold learning algorithm for dimensionality reduction attracts more and more interests, and various linear and nonlinear,global and local algorithms are proposed. The key step of manifold learning algorith...Recently manifold learning algorithm for dimensionality reduction attracts more and more interests, and various linear and nonlinear,global and local algorithms are proposed. The key step of manifold learning algorithm is the neighboring region selection. However,so far for the references we know,few of which propose a generally accepted algorithm to well select the neighboring region. So in this paper,we propose an adaptive neighboring selection algorithm,which successfully applies the LLE and ISOMAP algorithms in the test. It is an algorithm that can find the optimal K nearest neighbors of the data points on the manifold. And the theoretical basis of the algorithm is the approximated curvature of the data point on the manifold. Based on Riemann Geometry,Jacob matrix is a proper mathematical concept to predict the approximated curvature. By verifying the proposed algorithm on embedding Swiss roll from R3 to R2 based on LLE and ISOMAP algorithm,the simulation results show that the proposed adaptive neighboring selection algorithm is feasible and able to find the optimal value of K,making the residual variance relatively small and better visualization of the results. By quantitative analysis,the embedding quality measured by residual variance is increased 45. 45% after using the proposed algorithm in LLE.展开更多
Ulvophytes are attractive model systems for understanding the evolution of growth,development,and environmental stress responses.They are untapped resources for food,fuel,and high-value compounds.The rapid and abundan...Ulvophytes are attractive model systems for understanding the evolution of growth,development,and environmental stress responses.They are untapped resources for food,fuel,and high-value compounds.The rapid and abundant growth of Ulva species makes them key contributors to coastal biogeochemical cycles,which can cause significant environmental problems in the form of green tides and biofouling.Until now,the Ulva mutabilis genome is the only Ulva genome to have been sequenced.To obtain further insights into the evolutionary forces driving divergence in Ulva species,we analyzed 3905 single copy ortholog family from U.mutabilis,Chlamydomonas reinhardtii and Volvox carteri to identify genes under positive selection(GUPS)in U.mutabilis.We detected 63 orthologs in U.mutabilis that were considered to be under positive selection.Functional analyses revealed that several adaptive modifications in photosynthesis,amino acid and protein synthesis,signal transduction and stress-related processes might explain why this alga has evolved the ability to grow very rapidly and cope with the variable coastal ecosystem environments.展开更多
The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.Th...The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.展开更多
基金supported by the National Natural Science Foundation of China(62371049)。
文摘In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.
文摘This article employs a combined approach of biology and economics to reveal that biological evolution has an economic nature, evolving towards improved energy efficiency. The orthodox Darwinian theory of evolution describes evolution as the random variation of organisms and their survival through natural selection. In fact, the natural environment itself is a constantly changing context, and the strategy to adapt to this change is to enhance behavioral capabilities, thereby expanding the range and dimensions of behavior. Therefore, the improvement of behavioral capabilities is an important aspect of evolution. The enhancement of behavioral capabilities expands the range of adaptation to the natural environment and increases the space for behavioral choices. Within this space of behavioral choices, some options are more effective and superior to others;thus, the ability to select is necessary to make the improved behavioral capabilities more beneficial to the organism itself. The birth and development of the brain serve the purpose of selection. By using the brain to make selections, at least the “better” behavior will be chosen between two alternatives. Once the better behavior yields better results, and the organism can associate these results with the corresponding behavior, it will persist in this behavior. The persistent repetition of a behavior over generations will form a habit. Habits passed down through generations constitute a new environment, causing the organism’s genes to activate or deactivate certain functions, ultimately leading to genetic changes that are beneficial to that habit. Since the brain’s selection represents the organism’s self-selection, it differs from random variation;it is also a rational selection, choosing behaviors that either obtain more energy or reduce energy consumption. Thus, this evolution possesses an economic nature.
基金supported by the National Natural Science Foundation of China(Grant No.32171530 and 31472020)。
文摘Nest site selection is a vital component of bird reproduction success,and an adaptive behavior conducted to decrease nest predation risk with avoiding external disturbances.Understanding patterns of nest site selection can provide insights into how species adapt to changes in their habitat and has important conservation implications.In this study,we used microhabitat variables and multi-scale data with a field survey of nest occurrence to determine nest site selection patterns and adaptive strategies of the breeding Oriental Storks(Ciconia boyciana)in different nest areas.Results demonstrate that the nest site microhabitat characteristics of the breeding Oriental Storks significantly differed among the three nesting areas,and nest height was higher in the middle and lower Yangtze River floodplain than in the Northeast China and Bohai Bay nest areas.The food resources and intensity of human disturbance had the greatest effects on the nest site selection of the breeding Oriental Storks.The intensity of human disturbance was positively correlated with the nest height of the breeding Oriental Storks in Bohai Bay and the middle and lower Yangtze River floodplain;however,nest height decreased with the abundance of food resources in the Northeast China nest area.Our findings indicate that the nest site selection patterns of Oriental Storks showed flexible adaptive strategies.In safer environments,nests were lower and closer to food resources,which allows parent storks to invest more in the nestlings.However,in areas where human activity was intense,nests were higher to ensure the safety of their offspring.Some measures that could be taken to improve the breeding habitat of Oriental Storks include increasing the percentage of wetland areas in nesting areas to enhance food resources availability and setting artificial nests at suitable heights in potential nesting grounds to encourage nesting.Finally,the establishment of soft barriers around the nesting areas could increase the safety of nests.
基金supported by the National Natural Science Foundation of China(31701577).
文摘Next-generation sequencing technology has transformed our ability to assess the taxonomic composition functions of host-associated microbiota and microbiomes. More human microbiome research projects—particularly those that explore genomic mutations within the microbiome—will be launched in the next decade. This review focuses on the coevolution of microbes within a microbiome, which shapes strain-level diversity both within and between host species. We also explore the correlation between microbial genomic mutations and common metabolic diseases, and the adaptive evolution of pathogens and probiotics during invasion and colonization. Finally, we discuss advances in methods and algorithms for annotating and analyzing microbial genomic mutations.
基金Project supported by the National Natural Science Foundation of China(Nos.11972129 and12372008)the National Major Science and Technology Projects of China(No.2017-IV-0008-0045)+3 种基金the Natural Science Foundation of Heilongjiang Province of China(No.YQ2022A008)the Fundamental Research Funds for the Central Universities of China(No.HIT.OCEF.2023006)the Polish National Science Centre of Poland under the OPUS 18 grant(No.2019/35/B/ST8/00980)the Tianjin University Independent Innovation Foundation of China(No.2023XJS-0038)。
文摘The harmonic balance method(HBM)is one of the most widely used methods in solving nonlinear vibration problems,and its accuracy and computational efficiency largely depend on the number of the harmonics selected.The adaptive harmonic balance(AHB)method is an improved HBM method.This paper presents a modified AHB method with the asymptotic harmonic selection(AHS)procedure.This new harmonic selection procedure selects harmonics from the frequency spectra of nonlinear terms instead of estimating the contribution of each harmonic to the whole nonlinear response,by which the additional calculation is avoided.A modified continuation method is proposed to deal with the variable size of nonlinear algebraic equations at different values of path parameters,and then all solution branches of the amplitude-frequency response are obtained.Numerical experiments are carried out to verify the performance of the AHB-AHS method.Five typical nonlinear dynamic equations with different types of nonlinearities and excitations are chosen as the illustrative examples.Compared with the classical HBM and Runge-Kutta methods,the proposed AHB-AHS method is of higher accuracy and better convergence.The AHB-AHS method proposed in this paper has the potential to investigate the nonlinear vibrations of complex high-dimensional nonlinear systems.
文摘CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.
文摘With the rapid development of DNA technologies, high throughput genomic data have become a powerful leverage to locate desirable genetic loci associated with traits of importance in various crop species. However, current genetic association mapping analyses are focused on identifying individual QTLs. This study aimed to identify a set of QTLs or genetic markers, which can capture genetic variability for marker-assisted selection. Selecting a set with k loci that can maximize genetic variation out of high throughput genomic data is a challenging issue. In this study, we proposed an adaptive sequential replacement (ASR) method, which is considered a variant of the sequential replacement (SR) method. Through Monte Carlo simulation and comparing with four other selection methods: exhaustive, SR method, forward, and backward methods we found that the ASR method sustains consistent and repeatable results comparable to the exhaustive method with much reduced computational intensity.
基金supported by the National Key Research and Development Program of China(2021YFF1000600)the National Natural Science Foundation of China(32002150 and U23A20229)+3 种基金the Basic and Applied Basic Research Foundation of Guangdong Province(2020B1515120053)the Shenzhen Science and Technology Innovation Commission(JCYJ20190813114401691)the Central Government Guiding Funds for Local Science and Technology Development of China(He-Ke ZY220603)the Open Project of Hainan Provincial Key Laboratory of Tropical Animal Reproduction&Breeding and Epidemic Disease Research(HKL2020101)。
文摘Background Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones.Nevertheless,the mechanisms by which these signatures contribute to phenotypic diversity and facilitate environmental adaptation remain unclear.Results Here,we leveraged whole-genome sequencing data from 82 individuals from 6 domestic pig breeds originating in tropical,high-altitude,and frigid regions.Population genetic analysis suggested that habitat isolation significantly shaped the genetic diversity and contributed to population stratification in local Chinese pig breeds.Analysis of selection signals revealed regions under selection for adaptation in tropical(55.5 Mb),high-altitude(43.6 Mb),and frigid(17.72 Mb)regions.The potential functions of the selective sweep regions were linked to certain complex traits that might play critical roles in different geographic environments,including fat coverage in frigid environments and blood indicators in tropical and high-altitude environments.Candidate genes under selection were significantly enriched in biological pathways involved in environmental adaptation.These pathways included blood circulation,protein degradation,and inflammation for adaptation to tropical environments;heart and lung development,hypoxia response,and DNA damage repair for high-altitude adaptation;and thermogenesis,cold-induced vasodilation(CIVD),and the cell cycle for adaptation to frigid environments.By examining the chromatin state of the selection signatures,we identified the lung and ileum as two candidate functional tissues for environmental adaptation.Finally,we identified a mutation(chr1:G246,175,129A)in the cis-regulatory region of ABCA1 as a plausible promising variant for adaptation to tropical environments.Conclusions In this study,we conducted a genome-wide exploration of the genetic mechanisms underlying the adaptability of local Chinese pig breeds to tropical,high-altitude,and frigid environments.Our findings shed light on the prominent role of cis-regulatory elements in environmental adaptation in pigs and may serve as a valuable biological model of human plateau-related disorders and cardiovascular diseases.
文摘Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.
基金supported by the Russian Science Foundation within the Project No.21-66-00007support of the Russian Ministry of Science and Higher Education。
文摘Background The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by,and formed due to,past and current admixture events.Adaptation to diverse environments,including acclimation to harsh climatic conditions,has also left selection footprints in breed genomes.Results Using the Chicken 50K_CobbCons SNP chip,we genotyped four divergently selected breeds:two aboriginal,cold tolerant Ushanka and Orloff Mille Fleur,one egg-type Russian White subjected to artificial selection for cold tolerance,and one meat-type White Cornish.Signals of selective sweeps were determined in the studied breeds using three methods:(1)assessment of runs of homozygosity islands,(2)F_(ST) based population differential analysis,and(3)haplotype differentiation analysis.Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds.In these regions,we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies.Amongst them,SOX5,ME3,ZNF536,WWP1,RIPK2,OSGIN2,DECR1,TPO,PPARGC1A,BDNF,MSTN,and beta-keratin genes can be especially mentioned as candidates for cold adaptation.Epigenetic factors may be involved in regulating some of these important genes(e.g.,TPO and BDNF).Conclusion Based on a genome-wide scan,our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds.These include genes representing the sine qua non for adaptation to harsh environments.Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals,and this warrants further investigation.
基金supported by the National Natural Science Foundation of China(7177121671701209)
文摘Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution.
基金funded by the Swiss National Science Foundation (SNSF)the Netherlands Foundation for Scientific Research (NWO-ALW and NWO-WOTRO)
文摘The theory of ecological speciation suggests that assortative mating evolves most easily when mating preferences aredirectly linked to ecological traits that are subject to divergent selection. Sensory adaptation can play a major role in this process,because selective mating is often mediated by sexual signals: bright colours, complex song, pheromone blends and so on. Whendivergent sensory adaptation affects the perception of such signals, mating patterns may change as an immediate consequence.Alternatively, mating preferences can diverge as a result of indirect effects: assortative mating may be promoted by selectionagainst intermediate phenotypes that are maladapted to their (sensory) environment. For Lake Victoria cichlids, the visual environmentconstitutes an important selective force that is heterogeneous across geographical and water depth gradients. We investigatethe direct and indirect effects of this heterogeneity on the evolution of female preferences for alternative male nuptial colours(red and blue) in the genus Pundamilia. Here, we review the current evidence for divergent sensory drive in this system, extractgeneral principles, and discuss future perspectives [Current Zoology 56 (3): 285-299, 2010].
基金Supported by National Key Research and Development Program(Grant No.2017YFB0102601)National Natural Science Foundation of China(Grant Nos.51775236,U1564214).
文摘To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle.First,the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine,and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset.Second,according to the lane-changing intention and collision threat of the preceding vehicle,the target vehicle selection algorithm is studied under three different conditions:safe lane-changing,dangerous lane-changing,and lane-changing cancellation.Finally,the effectiveness of the proposed algorithm is verified in a co-simulation platform.The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver.In the case of a dangerous lane change,the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system;thus,it can effectively avoid collisions and improve the safety of the subject vehicle.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
文摘Accurate multi-source fusion is based on the reliability, quantity, and fusion mode of the sources. The problem of selecting the optimal set for participating in the fusion process is nondeterministic-polynomial-time-hard and is neither sub-modular nor super-modular. Furthermore, in the case of the Kalman filter(KF) fusion algorithm, accurate statistical characteristics of noise are difficult to obtain, and this leads to an unsatisfactory fusion result. To settle the referred cases, a distributed and adaptive weighted fusion algorithm based on KF has been proposed in this paper. In this method, on the basis of the pseudo prior probability of the estimated state of each source, the reliability of the sources is evaluated and the optimal set is selected on a certain threshold. Experiments were performed on multi-source pedestrian dead reckoning for verifying the proposed algorithm. The results obtained from these experiments indicate that the optimal set can be selected accurately with minimal computation, and the fusion error is reduced by 16.6% as compared to the corresponding value resulting from the algorithm without improvements.The proposed adaptive source reliability and fusion weight evaluation is effective against the varied-noise multi-source fusion system, and the fusion error caused by inaccurate statistical characteristics of the noise is reduced by the adaptive weight evaluation.The proposed algorithm exhibits good robustness, adaptability,and value on applications.
文摘The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise.
基金supported by the National Natural Science Foundation of China under Grant No.61171133the Natural Science Fund for Distinguished Young Scholars of Hunan Province under Grant No.11JJ1010the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20124307110013
文摘A basic assumption of most recently proposed waveform design algorithms is that the target impulse response is a known deterministic function or a stochastic process with a known power spectral density (PSD). However, it is well-known that a target impulse response is neither easily nor accurately obtained; besides it changes sharply with attitude angles. Both of the aforementioned cases complicate the waveform design process. In this paper, an adaptive robust waveform selection method for unknown target detection in clutter is proposed. The target impulse response is considered to be unknown but belongs to a known uncertainty set. An adaptive waveform library is devised by using a signal-to-clutter-plus-noise ratio (SCNR)- based optimal waveform design method. By applying the minimax robust waveform selection method, the optimal robust waveform is selected to ensure the lowest performance bound of the unknown target detection in clutter. Results show that the adaptive waveform library outperforms the predefined linear frequency modulation (LFM) waveform library on the SCNR bound.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61101122 and 61071105)Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2010090)+1 种基金Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory (Grant No. ITD-U12004)Postdoctoral Science Research Development Foundation of Heilongjiang Province (Grant No. LBH-Q12080)
文摘Recently manifold learning algorithm for dimensionality reduction attracts more and more interests, and various linear and nonlinear,global and local algorithms are proposed. The key step of manifold learning algorithm is the neighboring region selection. However,so far for the references we know,few of which propose a generally accepted algorithm to well select the neighboring region. So in this paper,we propose an adaptive neighboring selection algorithm,which successfully applies the LLE and ISOMAP algorithms in the test. It is an algorithm that can find the optimal K nearest neighbors of the data points on the manifold. And the theoretical basis of the algorithm is the approximated curvature of the data point on the manifold. Based on Riemann Geometry,Jacob matrix is a proper mathematical concept to predict the approximated curvature. By verifying the proposed algorithm on embedding Swiss roll from R3 to R2 based on LLE and ISOMAP algorithm,the simulation results show that the proposed adaptive neighboring selection algorithm is feasible and able to find the optimal value of K,making the residual variance relatively small and better visualization of the results. By quantitative analysis,the embedding quality measured by residual variance is increased 45. 45% after using the proposed algorithm in LLE.
基金Foundation item:The National Key Research and Development Program of China under contract No.2016YFC1402102the Central Public-interest Scientific Institution Basal Research Fund,CAFS under contract Nos 2020TD19 and 2020TD27+3 种基金the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program under contract No.2019JZZY020706the National Natural Science Foundation of China under contract No.31770393the Earmarked Fund for China Agriculture Research System under contract No.CARS-50the Taishan Scholars Funding of Shandong Province.
文摘Ulvophytes are attractive model systems for understanding the evolution of growth,development,and environmental stress responses.They are untapped resources for food,fuel,and high-value compounds.The rapid and abundant growth of Ulva species makes them key contributors to coastal biogeochemical cycles,which can cause significant environmental problems in the form of green tides and biofouling.Until now,the Ulva mutabilis genome is the only Ulva genome to have been sequenced.To obtain further insights into the evolutionary forces driving divergence in Ulva species,we analyzed 3905 single copy ortholog family from U.mutabilis,Chlamydomonas reinhardtii and Volvox carteri to identify genes under positive selection(GUPS)in U.mutabilis.We detected 63 orthologs in U.mutabilis that were considered to be under positive selection.Functional analyses revealed that several adaptive modifications in photosynthesis,amino acid and protein synthesis,signal transduction and stress-related processes might explain why this alga has evolved the ability to grow very rapidly and cope with the variable coastal ecosystem environments.
基金National Key R&D Program of China(2016YFd01304)Postgraduate Innovation Support Project of Shijiazhuang Tiedao University(YC20035).
文摘The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.