Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
We give a proof of an explicit formula for affine coodinates of points in the Sato’s infinite Grassmannian corresponding to tau-functions for the KdV hierarchy.
Intelligence and perception are two operative technologies in 6G scenarios.The intelligent wireless network and information perception require a deep fusion of artificial intelligence(AI)and wireless communications in...Intelligence and perception are two operative technologies in 6G scenarios.The intelligent wireless network and information perception require a deep fusion of artificial intelligence(AI)and wireless communications in 6G systems.Therefore,fusion is becoming a typical feature and key challenge of 6G wireless communication systems.In this paper,we focus on the critical issues and propose three application scenarios in 6G wireless systems.Specifically,we first discuss the fusion of AI and 6G networks for the enhancement of 5G-advanced technology and future wireless communication systems.Then,we introduce the wireless AI technology architecture with 6G multidimensional information perception,which includes the physical layer technology of multi-dimensional feature information perception,full spectrum fusion technology,and intelligent wireless resource management.The discussion of key technologies for intelligent 6G wireless network networks is expected to provide a guideline for future research.展开更多
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites...Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.展开更多
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev...Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.展开更多
For the two-dimensional(2D)scalar conservation law,when the initial data contain two different constant states and the initial discontinuous curve is a general curve,then complex structures of wave interactions will b...For the two-dimensional(2D)scalar conservation law,when the initial data contain two different constant states and the initial discontinuous curve is a general curve,then complex structures of wave interactions will be generated.In this paper,by proposing and investigating the plus envelope,the minus envelope,and the mixed envelope of 2D non-selfsimilar rarefaction wave surfaces,we obtain and the prove the new structures and classifications of interactions between the 2D non-selfsimilar shock wave and the rarefaction wave.For the cases of the plus envelope and the minus envelope,we get and prove the necessary and sufficient criterion to judge these two envelopes and correspondingly get more general new structures of 2D solutions.展开更多
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and...Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.展开更多
According to the standards of engineering education accreditation,the achievement paths and evaluation criteria of course goals are presented,aimed at the objectives of software engineering courses and the characteris...According to the standards of engineering education accreditation,the achievement paths and evaluation criteria of course goals are presented,aimed at the objectives of software engineering courses and the characteristics of hybrid teaching in Kunming University of Science and Technology.Then a multi-dimensional evaluation system for course goal achievement of software engineering is proposed.The practice’s results show that the multi-dimensional course goal achievement evaluation is helpful to the continuous improvement of course teaching,which can effectively support the evaluation of graduation outcomes.展开更多
Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniq...Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners.展开更多
Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension all...Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR.展开更多
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode...Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.展开更多
Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed...Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.展开更多
Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been construc...Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
The high energy coordination compounds Cu(TZCA)_(2)(ClO_(4))_(2)(ECCs-1) was prepared by 1H-tetrazole-5-carbohydrazide(TZCA) with a high energy skeleton and a strong coordination ability group.At the same time,the rea...The high energy coordination compounds Cu(TZCA)_(2)(ClO_(4))_(2)(ECCs-1) was prepared by 1H-tetrazole-5-carbohydrazide(TZCA) with a high energy skeleton and a strong coordination ability group.At the same time,the reaction activity of the ligand was explored,and the single crystal structure of it and intermediate were obtained.The structures of all substances were characterized by IR and EA.And the structure and composition of ECCs-1 are confirmed by ESP,AC,SEM and ICP-OES.Physical and chemical properties tests show that ECCs-1 has an acceptable thermal stability(T_(d)=177℃) and extremely sensitive mechanical stimulation(IS=1 J,FS=5 N).The comprehensive performance test results show that ECCs-1 has excellent initiation ability.In addition,the decomposition mechanism of ECCs-1 is explored from two aspects of experiment and theoretical calculation.展开更多
Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(...Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.展开更多
Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism...Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.展开更多
Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-me...Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.展开更多
3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting...3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.展开更多
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
文摘We give a proof of an explicit formula for affine coodinates of points in the Sato’s infinite Grassmannian corresponding to tau-functions for the KdV hierarchy.
文摘Intelligence and perception are two operative technologies in 6G scenarios.The intelligent wireless network and information perception require a deep fusion of artificial intelligence(AI)and wireless communications in 6G systems.Therefore,fusion is becoming a typical feature and key challenge of 6G wireless communication systems.In this paper,we focus on the critical issues and propose three application scenarios in 6G wireless systems.Specifically,we first discuss the fusion of AI and 6G networks for the enhancement of 5G-advanced technology and future wireless communication systems.Then,we introduce the wireless AI technology architecture with 6G multidimensional information perception,which includes the physical layer technology of multi-dimensional feature information perception,full spectrum fusion technology,and intelligent wireless resource management.The discussion of key technologies for intelligent 6G wireless network networks is expected to provide a guideline for future research.
基金the financial support from the Natural Science Foundation of China(Grant No.52172106)Anhui Provincial Natural Science Foundation(Grant Nos.2108085QB60 and 2108085QB61)China Postdoctoral Science Foundation(Grant Nos.2020M682057 and 2023T160651).
文摘Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.
基金supported by the National Natural Science Foundation of China(Nos.52275565,52105593,and 62104155)the Natural Science Foundation of Guangdong Province,China(No.2022A1515011667)+2 种基金the Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249)the Youth Talent Fund of Guangdong Province,China(No.2023A1515030292)the Shenzhen Excellent Youth Basic Research Fund(No.RCYX20231211090249068).
文摘Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.
基金supported in part by the NSFC(Grant No.11471332)The research of Gao-wei Cao was supported in part by the NSFC(Grant No.11701551).
文摘For the two-dimensional(2D)scalar conservation law,when the initial data contain two different constant states and the initial discontinuous curve is a general curve,then complex structures of wave interactions will be generated.In this paper,by proposing and investigating the plus envelope,the minus envelope,and the mixed envelope of 2D non-selfsimilar rarefaction wave surfaces,we obtain and the prove the new structures and classifications of interactions between the 2D non-selfsimilar shock wave and the rarefaction wave.For the cases of the plus envelope and the minus envelope,we get and prove the necessary and sufficient criterion to judge these two envelopes and correspondingly get more general new structures of 2D solutions.
基金supported by the National Natural Science Foundation of China(51872115,12234018 and 52101256)Beijing Synchrotron Radiation Facility(BSRF,4B9A)。
文摘Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.
基金supported by the Undergraduate Education and Teaching Reform Research Project of Yunnan Province(JG2023157)Support Program for Yunnan Talents(CA23138L010A)+2 种基金Yunnan Higher Education Undergraduate Teaching Achievement Project(202246)National First class Undergraduate Course Construction Project of Software Engineering(109620210004)Software Engineering Virtual Teaching and Research Office Construction Project of Kunming University of Science and Technology(109620220031)。
文摘According to the standards of engineering education accreditation,the achievement paths and evaluation criteria of course goals are presented,aimed at the objectives of software engineering courses and the characteristics of hybrid teaching in Kunming University of Science and Technology.Then a multi-dimensional evaluation system for course goal achievement of software engineering is proposed.The practice’s results show that the multi-dimensional course goal achievement evaluation is helpful to the continuous improvement of course teaching,which can effectively support the evaluation of graduation outcomes.
文摘Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners.
基金supported by the National Natural Science Foundation of China(No.61901465,82222032,82172050).
文摘Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR.
基金Project(2023JH26-10100002)supported by the Liaoning Science and Technology Major Project,ChinaProjects(U21A20117,52074085)supported by the National Natural Science Foundation of China+1 种基金Project(2022JH2/101300008)supported by the Liaoning Applied Basic Research Program Project,ChinaProject(22567612H)supported by the Hebei Provincial Key Laboratory Performance Subsidy Project,China。
文摘Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.
文摘Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.
文摘Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
基金projects of National Natural Science Foundation of China (Grant Nos.22175025 and 21905023) for their generous financial support。
文摘The high energy coordination compounds Cu(TZCA)_(2)(ClO_(4))_(2)(ECCs-1) was prepared by 1H-tetrazole-5-carbohydrazide(TZCA) with a high energy skeleton and a strong coordination ability group.At the same time,the reaction activity of the ligand was explored,and the single crystal structure of it and intermediate were obtained.The structures of all substances were characterized by IR and EA.And the structure and composition of ECCs-1 are confirmed by ESP,AC,SEM and ICP-OES.Physical and chemical properties tests show that ECCs-1 has an acceptable thermal stability(T_(d)=177℃) and extremely sensitive mechanical stimulation(IS=1 J,FS=5 N).The comprehensive performance test results show that ECCs-1 has excellent initiation ability.In addition,the decomposition mechanism of ECCs-1 is explored from two aspects of experiment and theoretical calculation.
文摘Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.
基金supported in part by the National Natural Science Foundation of China(No.51405237)。
文摘Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.
基金supported by the National Natural Science Foundation of China (No. 22005216 and 52172241)the General Research Fund of Hong Kong (No. CityU 11308321)Tianjin Research Innovation Project for Postgraduate Students (No.2022BKY130)
文摘Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.
基金supported financially by the Fundamental Research Funds for the Central Universities (YWF-22-K-101,YWF-23-L-805 and YWF-23-YG-QB-006)the support from the National Natural Science Foundation of China (12372106)Fundamental Research Funds for the Central Universities
文摘3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.