期刊文献+
共找到804篇文章
< 1 2 41 >
每页显示 20 50 100
Design of similarity measure for discrete data and application to multi-dimension 被引量:1
1
作者 LEE Myeong-ho 魏荷 +2 位作者 LEE Sang-hyuk LEE Sang-min SHIN Seung-soo 《Journal of Central South University》 SCIE EI CAS 2013年第4期982-987,共6页
Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and d... Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem. 展开更多
关键词 similarity measure multi-dimension discrete data relative degree power interconnected system
下载PDF
Multi-dimensional database design and implementation of dam safety monitoring system 被引量:1
2
作者 Zhao Erfeng Wang Yachao +2 位作者 Jiang Yufeng Zhang Lei Yu Hong 《Water Science and Engineering》 EI CAS 2008年第3期112-120,共9页
To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mo... To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers. 展开更多
关键词 dam safety multi-dimensional database conceptual data model database mode monitoring system
下载PDF
Goodness-of-fit tests for multi-dimensional copulas:Expanding application to historical drought data 被引量:2
3
作者 Ming-wei MA Li-liang REN +2 位作者 Song-bai SONG Jia-li SONG Shan-hu JIANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期18-30,共13页
The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for mul... The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt's transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required. 展开更多
关键词 goodness-of-fit test multi-dimensional copulas stochastic simulation Rosenblatt'stransformation bootstrap approach drought data
下载PDF
A data-mining approach to biomarker identification from protein profiles using discrete stationary wavelet transform
4
作者 Hussain MONTAZERY-KORDY Mohammad Hossein MIRAN-BAYGI Mohammad Hassan MORADI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第11期863-870,共8页
Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods... Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods: Two independent datasets from serum samples of 253 ovarian cancer and 167 breast cancer patients were used. The samples were examined by surface- enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The datasets were used to extract the informative proteins using a data-mining method in the discrete stationary wavelet transform domain. As a dimensionality re- duction procedure, the hard thresholding method was applied to reduce the number of wavelet coefficients. Also, a distance measure was used to select the most discriminative coefficients. To find the potential biomarkers using the selected wavelet coefficients, we applied the inverse discrete stationary wavelet transform combined with a two-sided t-test. Results: From the ovarian cancer dataset, a set of five proteins were detected as potential biomarkers that could be used to identify the cancer patients from the healthy cases with accuracy, sensitivity, and specificity of 100%. Also, from the breast cancer dataset, a set of eight proteins were found as the potential biomarkers that could separate the healthy cases from the cancer patients with accuracy of 98.26%, sensitivity of 100%, and specificity of 95.6%. Conclusion: The results have shown that the new bioinformatic tool can be used in combination with the high-throughput proteomic data such as SELDI-TOF MS to find the potential biomarkers with high discriminative power. 展开更多
关键词 PROTEOMICS discrete stationary wavelet transform data mining Feature selection BIOMARKER Cancer classification
下载PDF
Data inversion of multi-dimensional magnetic resonance in porous media
5
作者 Fangrong Zong Huabing Liu +1 位作者 Ruiliang Bai Petrik Galvosas 《Magnetic Resonance Letters》 2023年第2期127-139,I0004,共14页
Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension all... Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR. 展开更多
关键词 multi-dimensional MR data inversion Porous media Inverse Laplace transform FOURIERTRANSFORM
下载PDF
Discrete GWO Optimized Data Aggregation for Reducing Transmission Rate in IoT
6
作者 S.Siamala Devi K.Venkatachalam +1 位作者 Yunyoung Nam Mohamed Abouhawwash 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1869-1880,共12页
The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies.Early diagnosis of many diseases will improve the patient ... The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies.Early diagnosis of many diseases will improve the patient life.The cost of health care systems is reduced due to the use of advanced technologies such as Internet of Things(IoT),Wireless Sensor Networks(WSN),Embedded systems,Deep learning approaches and Optimization and aggregation methods.The data generated through these technologies will demand the bandwidth,data rate,latency of the network.In this proposed work,efficient discrete grey wolf optimization(DGWO)based data aggregation scheme using Elliptic curve Elgamal with Message Authentication code(ECEMAC)has been used to aggregate the parameters generated from the wearable sensor devices of the patient.The nodes that are far away from edge node will forward the data to its neighbor cluster head using DGWO.Aggregation scheme will reduce the number of transmissions over the network.The aggregated data are preprocessed at edge node to remove the noise for better diagnosis.Edge node will reduce the overhead of cloud server.The aggregated data are forward to cloud server for central storage and diagnosis.This proposed smart diagnosis will reduce the transmission cost through aggrega-tion scheme which will reduce the energy of the system.Energy cost for proposed system for 300 nodes is 0.34μJ.Various energy cost of existing approaches such as secure privacy preserving data aggregation scheme(SPPDA),concealed data aggregation scheme for multiple application(CDAMA)and secure aggregation scheme(ASAS)are 1.3μJ,0.81μJ and 0.51μJ respectively.The optimization approaches and encryption method will ensure the data privacy. 展开更多
关键词 discrete grey wolf optimization data aggregation cloud computing IOT WSN smart healthcare elliptic curve elgamal energy optimization
下载PDF
Heat Conduction Analytical Solutions to be Applied in Boundary Conditions Obtained from Discrete Data
7
作者 Ana Paula Femandes Gilmar Guimaraes 《Journal of Energy and Power Engineering》 2013年第8期1527-1532,共6页
Analytical solutions have varied uses. One is to provide solutions that can be used in verification of numerical methods. Another is to provide relatively simple forms of exact solutions that can be used in estimating... Analytical solutions have varied uses. One is to provide solutions that can be used in verification of numerical methods. Another is to provide relatively simple forms of exact solutions that can be used in estimating parameters, thus, it is possible to reduce computation time in comparison with numerical methods. In this paper, an alternative procedure is presented. Here is used a hybrid solution based on Green's function and real characteristics (discrete data) of the boundary conditions. 展开更多
关键词 Heat conduction analytical solutions discrete data.
下载PDF
Intrusion Detection System for PS-Poll DoS Attack in 802.11 Networks Using Real Time Discrete Event System 被引量:5
8
作者 Mayank Agarwal Sanketh Purwar +1 位作者 Santosh Biswas Sukumar Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期792-808,共17页
Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to prese... Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to preserve energy without any frame losses. After the STA wakes up, it sends a null data or PS-Poll frame to retrieve frame(s) buffered by the access point(AP), if any during its sleep period. An attacker can launch a power save denial of service(PS-DoS) attack on the sleeping STA(s) by transmitting a spoofed null data or PS-Poll frame(s) to retrieve the buffered frame(s) of the sleeping STA(s) from the AP causing frame losses for the targeted STA(s). Current approaches to prevent or detect the PS-DoS attack require encryption,change in protocol or installation of proprietary hardware. These solutions suffer from expensive setup, maintenance, scalability and deployment issues. The PS-DoS attack does not differ in semantics or statistics under normal and attack circumstances.So signature and anomaly based intrusion detection system(IDS) are unfit to detect the PS-DoS attack. In this paper we propose a timed IDS based on real time discrete event system(RTDES) for detecting PS-DoS attack. The proposed DES based IDS overcomes the drawbacks of existing systems and detects the PS-DoS attack with high accuracy and detection rate. The correctness of the RTDES based IDS is proved by experimenting all possible attack scenarios. 展开更多
关键词 Fault detection and diagnosis intrusion detection system(IDS) null data frame power save attack PS-Poll frame real time discrete event system(DES)
下载PDF
Discrete rough set analysis of two different soil-behavior-induced landslides in National Shei-Pa Park,Taiwan 被引量:4
9
作者 Shih-Hsun Chang Shiuan Wan 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第6期807-816,共10页
The governing factors that influence landslide occurrences are complicated by the different soil conditions at various sites.To resolve the problem,this study focused on spatial information technology to collect data ... The governing factors that influence landslide occurrences are complicated by the different soil conditions at various sites.To resolve the problem,this study focused on spatial information technology to collect data and information on geology.GIS,remote sensing and digital elevation model(DEM) were used in combination to extract the attribute values of the surface material in the vast study area of SheiPa National Park,Taiwan.The factors influencing landslides were collected and quantification values computed.The major soil component of loam and gravel in the Shei-Pa area resulted in different landslide problems.The major factors were successfully extracted from the influencing factors.Finally,the discrete rough set(DRS) classifier was used as a tool to find the threshold of each attribute contributing to landslide occurrence,based upon the knowledge database.This rule-based knowledge database provides an effective and urgent system to manage landslides.NDVI(Normalized Difference Vegetation Index),VI(Vegetation Index),elevation,and distance from the road are the four major influencing factors for landslide occurrence.The landslide hazard potential diagrams(landslide susceptibility maps) were drawn and a rational accuracy rate of landslide was calculated.This study thus offers a systematic solution to the investigation of landslide disasters. 展开更多
关键词 Landslide data mining discrete rough sets Taiwan
下载PDF
Finding Main Causes of Elevator Accidents via Multi-Dimensional Association Rule in Edge Computing Environment 被引量:2
10
作者 Hongman Wang Mengqi Zeng +1 位作者 Zijie Xiong Fangchun Yang 《China Communications》 SCIE CSCD 2017年第11期39-47,共9页
In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and impl... In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents. 展开更多
关键词 elevator group accidents APRIORI multi-dimensional association rules data cube edge computing
下载PDF
Target threat estimation based on discrete dynamic Bayesian networks with small samples 被引量:2
11
作者 YE Fang MAO Ying +1 位作者 LI Yibing LIU Xinrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1135-1142,共8页
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr... The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications. 展开更多
关键词 discrete dynamic Bayesian network(DDBN) parameter learning missing data filling Bayesian estimation
下载PDF
H_∞ Filter Design for Discrete-time Systems with Missing Measurements 被引量:18
12
作者 WANG Wu YANG Fu-Wen 《自动化学报》 EI CSCD 北大核心 2006年第1期107-111,共5页
For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-... For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-time systems with missing measurements. The missing measurements will happen at any sample time, and the probability of the occurrence of missing data is assumed to be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of the proposed design approach. 展开更多
关键词 数据丢失 离散系统 滤波器 线性矩阵不等式
下载PDF
Outlier detection based on multi-dimensional clustering and local density
13
作者 SHOU Zhao-yu LI Meng-ya LI Si-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1299-1306,共8页
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl... Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments. 展开更多
关键词 data MINING OUTLIER DETECTION OUTLIER DETECTION method based on multi-dimensional CLUSTERING and local density (ODBMCLD) algorithm deviation DEGREE
下载PDF
Authentication and Secret Message Transmission Technique Using Discrete Fourier Transformation
14
作者 Debnath BHATTACHARYYA Jhuma DUTTA +2 位作者 Poulami DAS Samir Kumar BANDYOPADHYAY Tai-hoon KIM 《International Journal of Communications, Network and System Sciences》 2009年第5期363-370,共8页
In this paper a novel technique, Authentication and Secret Message Transmission using Discrete Fourier Transformation (ASMTDFT) has been proposed to authenticate an image and also some secret message or image can be t... In this paper a novel technique, Authentication and Secret Message Transmission using Discrete Fourier Transformation (ASMTDFT) has been proposed to authenticate an image and also some secret message or image can be transmitted over the network. Instead of direct embedding a message or image within the source image, choosing a window of size 2 x 2 of the source image in sliding window manner and then con-vert it from spatial domain to frequency domain using Discrete Fourier Transform (DFT). The bits of the authenticating message or image are then embedded at LSB within the real part of the transformed image. Inverse DFT is performed for the transformation from frequency domain to spatial domain as final step of encoding. Decoding is done through the reverse procedure. The experimental results have been discussed and compared with the existing steganography algorithm S-Tools. Histogram analysis and Chi-Square test of source image with embedded image shows the better results in comparison with the S-Tools. 展开更多
关键词 data Hiding AUTHENTICATION Frequency Domain discrete FOURIER Transformation (DFT) INVERSE discrete FOURIER TRANSFORM (IDFT) S-Tools
下载PDF
A Discrete Model of TB Dynamics in Khyber Pakhtunkhwa-Pakistan
15
作者 Muhammad Altaf Khan Khanadan Khan +1 位作者 Mohammad A.Safi Mahmoud H.DarAssi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期777-795,共19页
The present paper investigates the theoretical analysis of the tuberculosis(TB)model in the discrete-time case.The model is parameterized by the TB infection cases in the Pakistani province of Khyber Pakhtunkhwa betwe... The present paper investigates the theoretical analysis of the tuberculosis(TB)model in the discrete-time case.The model is parameterized by the TB infection cases in the Pakistani province of Khyber Pakhtunkhwa between 2002 and 2017.The model is parameterized and the basic reproduction number is obtained and it is found R_(0)=1:5853.The stability analysis for the model is presented and it is shown that the discrete-time tuberculosis model is stable at the disease-free equilibrium whenever R_(0)<1 and further we establish the results for the endemic equilibria and prove that the model is globally asymptotically stable if R_(0)>1.A discrete fractional model in the sense of Caputo derivative is presented.The numerical results of the model with various parameters and their effect on the model are presented.A comparison of discrete-time method with continuous-time model is presented graphically.A discrete fractional approach is compared with the existing method in literature and some reasonable results are achieved.Finally,a summary of results and conclusion are presented. 展开更多
关键词 discrete TB model real data EQUILIBRIA LYAPUNOV STABILITY Caputo derivative
下载PDF
A Robust Digital Watermarking Algorithm Based on Finite-Set Discrete Radon Transform Tight Frame
16
作者 Jiangui Zhang Huibin Qi 《Journal of Computer and Communications》 2020年第12期123-133,共11页
<div style="text-align:justify;"> Digital watermarking technology plays a powerful role in the effective protection of digital media copyright, image authentication, image sharing, image information tr... <div style="text-align:justify;"> Digital watermarking technology plays a powerful role in the effective protection of digital media copyright, image authentication, image sharing, image information transmission and other fields. Driven by strong demand, digital image watermarking technology has aroused widespread research interest and has gradually developed into one of the most active research directions in information science. In this paper, we present a novel robust digital watermarking algorithm based on discrete radon transform tight frame in finite-set (FDRT). FDRT of the zero mean image is a tight frame, the frame boundary <em><strong>A</strong></em> = <em><strong>B</strong></em> = 1, the dual of the frame is itself. The decomposition and reconstruction of the FDRT tight frame will not cause the phenomenon of image distortion. The embedding of hidden watermark is to add a weak signal to the strong background of the original image. Watermark extraction is to effectively identify the embedded weak signal. The feasibility of the watermarking algorithm is analyzed from two aspects of information hiding and robustness. We select the independent Gaussian random vector as the watermark series, and the peak signal-to-noise ratio (PSNR) as the visual degradation criterion of the watermark image. Basing the FDRT compact stand dual operator, we derived the relationship among the strength parameter, square sum of watermark series, the PSNR. Using Checkmark system, the simulation results show that the algorithm is robust enough to some very important image processing attacks such as lossy compression, MAP, filtering, segmentation, edge enhancement, jitter, quadratic modulation and general geometric attack (scaling, rotation, shearing), etc. </div> 展开更多
关键词 Digital Watermarking data Mining discrete Radon Transform Tight Frame Copyright Protection Information Hiding Finite-Set
下载PDF
Discrete Event Simulation-Based Evaluation of a Single-Lane Synchronized Dual-Traffic Light Intersections
17
作者 Chimezie Calistus Ogharandukun Martin +1 位作者 Abdullahi Monday Essien Joe 《Journal of Computer and Communications》 2023年第10期82-100,共19页
This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system model... This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system modelled on Anylogic version 8.8.4. Anylogic is a multi-paradigm simulation tool that supports three main simulation methodologies: discrete event simulation, agent-based modeling, and system dynamics modeling. The system is used to evaluate the implication of stochastic time-based vehicle variables on the general efficiency of road use. Road use efficiency as reflected in this model is based on the percentage of entry vehicles to exit the model within a one-hour simulation period. The study deduced that for the model under review, an increase in entry point time delay has a domineering influence on the efficiency of road use far beyond any other consideration. This study therefore presents a novel approach that leverages Discrete Events Simulation to facilitate efficient road management with a focus on optimum road use efficiency. The study also determined that the inclusion of appropriate random parameters to reflect road use activities at critical event points in a simulation can help in the effective representation of authentic traffic models. The Anylogic simulation software leverages the Classic DEVS and Parallel DEVS formalisms to achieve these objectives. 展开更多
关键词 Multi-Core Processing Distributed Computing Event-Driven Modelling discrete Event Simulation data Analysis and Visualization
下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
18
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
下载PDF
MIDCA - A Discretization Model for Data Preprocessing in Data Mining
19
作者 Sam Chao Fai Wong Yiping Li 《通讯和计算机(中英文版)》 2006年第5期1-7,共7页
关键词 数据处理 数据采集 MIDCA模型 关联性
下载PDF
Visual exploration of multi-dimensional data via rule-based sample embedding
20
作者 Tong Zhang Jie Li Chao Xu 《Visual Informatics》 EI 2024年第3期53-56,共4页
We propose an approach to learning sample embedding for analyzing multi-dimensional datasets.The basic idea is to extract rules from the given dataset and learn the embedding for each sample based on the rules it sati... We propose an approach to learning sample embedding for analyzing multi-dimensional datasets.The basic idea is to extract rules from the given dataset and learn the embedding for each sample based on the rules it satisfies.The approach can filter out pattern-irrelevant attributes,leading to significant visual structures of samples satisfying the same rules in the projection.In addition,analysts can understand a visual structure based on the rules that the involved samples satisfy,which improves the projection’s pattern interpretability.Our research involves two methods for achieving and applying the approach.First,we give a method to learn rule-based embedding for each sample.Second,we integrate the method into a system to achieve an analytical workflow.Cases on real-world dataset and quantitative experiment results show the usability and effectiveness of our approach. 展开更多
关键词 Tabular data multi-dimensional exploration Embedding projection RULE Visual analytics
原文传递
上一页 1 2 41 下一页 到第
使用帮助 返回顶部