Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu...Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.展开更多
Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to th...Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to the correct parent node instead of treating leaf nodes as the final classification target.Second,error propagation occurs when a misclassification at a parent node propagates down the hierarchy,ultimately leading to inaccurate predictions at the leaf nodes.To address these limitations,we propose an uncertainty-guided HTC depth-aware model called DepthMatch.Specifically,we design an early stopping strategy with uncertainty to identify incomplete matching between text and labels,classifying them into the corresponding parent node labels.This approach allows us to dynamically determine the classification depth by leveraging evidence to quantify and accumulate uncertainty.Experimental results show that the proposed DepthMatch outperforms recent strong baselines on four commonly used public datasets:WOS(Web of Science),RCV1-V2(Reuters Corpus Volume I),AAPD(Arxiv Academic Paper Dataset),and BGC.Notably,on the BGC dataset,it improvesMicro-F1 andMacro-F1 scores by at least 1.09%and 1.74%,respectively.展开更多
Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality.This involves elim...Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality.This involves eliminating irrelevant,redundant,and noisy features to streamline the classification process.Various methods,from single feature selection techniques to ensemble filter-wrapper methods,have been used in the literature.Metaheuristic algorithms have become popular due to their ability to handle optimization complexity and the continuous influx of text documents.Feature selection is inherently multi-objective,balancing the enhancement of feature relevance,accuracy,and the reduction of redundant features.This research presents a two-fold objective for feature selection.The first objective is to identify the top-ranked features using an ensemble of three multi-univariate filter methods:Information Gain(Infogain),Chi-Square(Chi^(2)),and Analysis of Variance(ANOVA).This aims to maximize feature relevance while minimizing redundancy.The second objective involves reducing the number of selected features and increasing accuracy through a hybrid approach combining Artificial Bee Colony(ABC)and Genetic Algorithms(GA).This hybrid method operates in a wrapper framework to identify the most informative subset of text features.Support Vector Machine(SVM)was employed as the performance evaluator for the proposed model,tested on two high-dimensional multiclass datasets.The experimental results demonstrated that the ensemble filter combined with the ABC+GA hybrid approach is a promising solution for text feature selection,offering superior performance compared to other existing feature selection algorithms.展开更多
Social media has revolutionized the dissemination of real-life information,serving as a robust platform for sharing life events.Twitter,characterized by its brevity and continuous flow of posts,has emerged as a crucia...Social media has revolutionized the dissemination of real-life information,serving as a robust platform for sharing life events.Twitter,characterized by its brevity and continuous flow of posts,has emerged as a crucial source for public health surveillance,offering valuable insights into public reactions during the COVID-19 pandemic.This study aims to leverage a range of machine learning techniques to extract pivotal themes and facilitate text classification on a dataset of COVID-19 outbreak-related tweets.Diverse topic modeling approaches have been employed to extract pertinent themes and subsequently form a dataset for training text classification models.An assessment of coherence metrics revealed that the Gibbs Sampling Dirichlet Mixture Model(GSDMM),which utilizes trigram and bag-of-words(BOW)feature extraction,outperformed Non-negative Matrix Factorization(NMF),Latent Dirichlet Allocation(LDA),and a hybrid strategy involving Bidirectional Encoder Representations from Transformers(BERT)combined with LDA and K-means to pinpoint significant themes within the dataset.Among the models assessed for text clustering,the utilization of LDA,either as a clustering model or for feature extraction combined with BERT for K-means,resulted in higher coherence scores,consistent with human ratings,signifying their efficacy.In particular,LDA,notably in conjunction with trigram representation and BOW,demonstrated superior performance.This underscores the suitability of LDA for conducting topic modeling,given its proficiency in capturing intricate textual relationships.In the context of text classification,models such as Linear Support Vector Classification(LSVC),Long Short-Term Memory(LSTM),Bidirectional Long Short-Term Memory(BiLSTM),Convolutional Neural Network with BiLSTM(CNN-BiLSTM),and BERT have shown outstanding performance,achieving accuracy and weighted F1-Score scores exceeding 80%.These results significantly surpassed other models,such as Multinomial Naive Bayes(MNB),Linear Support Vector Machine(LSVM),and Logistic Regression(LR),which achieved scores in the range of 60 to 70 percent.展开更多
We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract informa...We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach.展开更多
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me...While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.展开更多
Text classification is an essential task for many applications related to the Natural Language Processing domain.It can be applied in many fields,such as Information Retrieval,Knowledge Extraction,and Knowledge modeli...Text classification is an essential task for many applications related to the Natural Language Processing domain.It can be applied in many fields,such as Information Retrieval,Knowledge Extraction,and Knowledge modeling.Even though the importance of this task,Arabic Text Classification tools still suffer from many problems and remain incapable of responding to the increasing volume of Arabic content that circulates on the web or resides in large databases.This paper introduces a novel machine learning-based approach that exclusively uses hybrid(stylistic and semantic)features.First,we clean the Arabic documents and translate them to English using translation tools.Consequently,the semantic features are automatically extracted from the translated documents using an existing database of English topics.Besides,the model automatically extracts from the textual content a set of stylistic features such as word and character frequencies and punctuation.Therefore,we obtain 3 types of features:semantic,stylistic and hybrid.Using each time,a different type of feature,we performed an in-depth comparison study of nine well-known Machine Learning models to evaluate our approach and used a standard Arabic corpus.The obtained results show that Neural Network outperforms other models and provides good performances using hybrid features(F1-score=0.88%).展开更多
With a population of 440 million,Arabic language users form the rapidly growing language group on the web in terms of the number of Internet users.11 million monthly Twitter users were active and posted nearly 27.4 mi...With a population of 440 million,Arabic language users form the rapidly growing language group on the web in terms of the number of Internet users.11 million monthly Twitter users were active and posted nearly 27.4 million tweets every day.In order to develop a classification system for the Arabic lan-guage there comes a need of understanding the syntactic framework of the words thereby manipulating and representing the words for making their classification effective.In this view,this article introduces a Dolphin Swarm Optimization with Convolutional Deep Belief Network for Short Text Classification(DSOCDBN-STC)model on Arabic Corpus.The presented DSOCDBN-STC model majorly aims to classify Arabic short text in social media.The presented DSOCDBN-STC model encompasses preprocessing and word2vec word embedding at the preliminary stage.Besides,the DSOCDBN-STC model involves CDBN based classification model for Arabic short text.At last,the DSO technique can be exploited for optimal modification of the hyperparameters related to the CDBN method.To establish the enhanced performance of the DSOCDBN-STC model,a wide range of simulations have been performed.The simulation results con-firmed the supremacy of the DSOCDBN-STC model over existing models with improved accuracy of 99.26%.展开更多
In the realm of Multi-Label Text Classification(MLTC),the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches.Many studies in sema...In the realm of Multi-Label Text Classification(MLTC),the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches.Many studies in semantic feature extraction have turned to external knowledge to augment the model’s grasp of textual content,often overlooking intrinsic textual cues such as label statistical features.In contrast,these endogenous insights naturally align with the classification task.In our paper,to complement this focus on intrinsic knowledge,we introduce a novel Gate-Attention mechanism.This mechanism adeptly integrates statistical features from the text itself into the semantic fabric,enhancing the model’s capacity to understand and represent the data.Additionally,to address the intricate task of mining label correlations,we propose a Dual-end enhancement mechanism.This mechanism effectively mitigates the challenges of information loss and erroneous transmission inherent in traditional long short term memory propagation.We conducted an extensive battery of experiments on the AAPD and RCV1-2 datasets.These experiments serve the dual purpose of confirming the efficacy of both the Gate-Attention mechanism and the Dual-end enhancement mechanism.Our final model unequivocally outperforms the baseline model,attesting to its robustness.These findings emphatically underscore the imperativeness of taking into account not just external knowledge but also the inherent intricacies of textual data when crafting potent MLTC models.展开更多
The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic languag...The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic language has a lot of significance.For instance,it is the fourth mostly-used language on the internet and the sixth official language of theUnitedNations.However,there are few studies on the text classification process in Arabic.A few text classification studies have been published earlier in the Arabic language.In general,researchers face two challenges in the Arabic text classification process:low accuracy and high dimensionality of the features.In this study,an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning(AATC-HTHDL)model is proposed.The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text.The first step in the proposed model is to pre-process the input data to transform it into a useful format.The Term Frequency-Inverse Document Frequency(TF-IDF)model is applied to extract the feature vectors.Next,the Convolutional Neural Network with Recurrent Neural Network(CRNN)model is utilized to classify the Arabic text.In the final stage,the Crow Search Algorithm(CSA)is applied to fine-tune the CRNN model’s hyperparameters,showing the work’s novelty.The proposed AATCHTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches.展开更多
Text classification is an essential task of natural language processing. Preprocessing, which determines the representation of text features, is one of the key steps of text classification architecture. It proposed a ...Text classification is an essential task of natural language processing. Preprocessing, which determines the representation of text features, is one of the key steps of text classification architecture. It proposed a novel efficient and effective preprocessing algorithm with three methods for text classification combining the Orthogonal Matching Pursuit algorithm to perform the classification. The main idea of the novel preprocessing strategy is that it combined stopword removal and/or regular filtering with tokenization and lowercase conversion, which can effectively reduce the feature dimension and improve the text feature matrix quality. Simulation tests on the 20 newsgroups dataset show that compared with the existing state-of-the-art method, the new method reduces the number of features by 19.85%, 34.35%, 26.25% and 38.67%, improves accuracy by 7.36%, 8.8%, 5.71% and 7.73%, and increases the speed of text classification by 17.38%, 25.64%, 23.76% and 33.38% on the four data, respectively.展开更多
To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree...To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.展开更多
以编目分类和规则匹配为主的古籍文本主题分类方法存在工作效能低、专家知识依赖性强、分类依据单一化、古籍文本主题自动分类难等问题。对此,本文结合古籍文本内容和文字特征,尝试从古籍内容分类得到符合研究者需求的主题,推动数字人...以编目分类和规则匹配为主的古籍文本主题分类方法存在工作效能低、专家知识依赖性强、分类依据单一化、古籍文本主题自动分类难等问题。对此,本文结合古籍文本内容和文字特征,尝试从古籍内容分类得到符合研究者需求的主题,推动数字人文研究范式的转型。首先,参照东汉古籍《说文解字》对文字的分析方式,以前期标注的古籍语料数据集为基础,构建全新的“字音(说)-原文(文)-结构(解)-字形(字)”四维特征数据集。其次,设计四维特征向量提取模型(speaking,word,pattern,and font to vector,SWPF2vec),并结合预训练模型实现对古籍文本细粒度的特征表示。再其次,构建融合卷积神经网络、循环神经网络和多头注意力机制的古籍文本主题分类模型(dianji-recurrent convolutional neural networks for text classification,DJ-TextRCNN)。最后,融入四维语义特征,实现对古籍文本多维度、深层次、细粒度的语义挖掘。在古籍文本主题分类任务上,DJ-TextRCNN模型在不同维度特征下的主题分类准确率均为最优,在“说文解字”四维特征下达到76.23%的准确率,初步实现了对古籍文本的精准主题分类。展开更多
The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parall...The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.展开更多
Text classification has always been an increasingly crucial topic in natural language processing.Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion,da...Text classification has always been an increasingly crucial topic in natural language processing.Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion,data sparsity,limited generalization ability and so on.Based on deep learning text classification,this paper presents an extensive study on the text classification models including Convolutional Neural Network-Based(CNN-Based),Recurrent Neural Network-Based(RNN-based),Attention Mechanisms-Based and so on.Many studies have proved that text classification methods based on deep learning outperform the traditional methods when processing large-scale and complex datasets.The main reasons are text classification methods based on deep learning can avoid cumbersome feature extraction process and have higher prediction accuracy for a large set of unstructured data.In this paper,we also summarize the shortcomings of traditional text classification methods and introduce the text classification process based on deep learning including text preprocessing,distributed representation of text,text classification model construction based on deep learning and performance evaluation.展开更多
Active learning has been widely utilized to reduce the labeling cost of supervised learning.By selecting specific instances to train the model,the performance of the model was improved within limited steps.However,rar...Active learning has been widely utilized to reduce the labeling cost of supervised learning.By selecting specific instances to train the model,the performance of the model was improved within limited steps.However,rare work paid attention to the effectiveness of active learning on it.In this paper,we proposed a deep active learning model with bidirectional encoder representations from transformers(BERT)for text classification.BERT takes advantage of the self-attention mechanism to integrate contextual information,which is beneficial to accelerate the convergence of training.As for the process of active learning,we design an instance selection strategy based on posterior probabilities Margin,Intra-correlation and Inter-correlation(MII).Selected instances are characterized by small margin,low intra-cohesion and high inter-cohesion.We conduct extensive experiments and analytics with our methods.The effect of learner is compared while the effect of sampling strategy and text classification is assessed from three real datasets.The results show that our method outperforms the baselines in terms of accuracy.展开更多
This paper presents a new improved term frequency/inverse document frequency (TF-IDF) approach which uses confidence, support and characteristic words to enhance the recall and precision of text classification. Synony...This paper presents a new improved term frequency/inverse document frequency (TF-IDF) approach which uses confidence, support and characteristic words to enhance the recall and precision of text classification. Synonyms defined by a lexicon are processed in the improved TF-IDF approach. We detailedly discuss and analyze the relationship among confidence, recall and precision. The experiments based on science and technology gave promising results that the new TF-IDF approach improves the precision and recall of text classification compared with the conventional TF-IDF approach.展开更多
The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descript...The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descriptive way, to measure the stochastic dependency of discrete random variables. The measure method was used as a criterion to reduce high dimensionality of feature vectors in text classification on Web. Feature selections or conversions were performed by using maximum mutual information including linear and non-linear feature conversions. Entropy was used and extended to find right features commendably in pattern recognition systems. Favorable foundation would be established for text classification mining.展开更多
Question-answering(QA)models find answers to a given question.The necessity of automatically finding answers is increasing because it is very important and challenging from the large-scale QA data sets.In this paper,w...Question-answering(QA)models find answers to a given question.The necessity of automatically finding answers is increasing because it is very important and challenging from the large-scale QA data sets.In this paper,we deal with the QA pair matching approach in QA models,which finds the most relevant question and its recommended answer for a given question.Existing studies for the approach performed on the entire dataset or datasets within a category that the question writer manually specifies.In contrast,we aim to automatically find the category to which the question belongs by employing the text classification model and to find the answer corresponding to the question within the category.Due to the text classification model,we can effectively reduce the search space for finding the answers to a given question.Therefore,the proposed model improves the accuracy of the QA matching model and significantly reduces the model inference time.Furthermore,to improve the performance of finding similar sentences in each category,we present an ensemble embedding model for sentences,improving the performance compared to the individual embedding models.Using real-world QA data sets,we evaluate the performance of the proposed QA matching model.As a result,the accuracy of our final ensemble embedding model based on the text classification model is 81.18%,which outperforms the existing models by 9.81%∼14.16%point.Moreover,in terms of the model inference speed,our model is faster than the existing models by 2.61∼5.07 times due to the effective reduction of search spaces by the text classification model.展开更多
文摘Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.
基金sponsored by the National Key Research and Development Program of China(No.2021YFF0704100)the National Natural Science Foundation of China(No.62136002)+1 种基金the Chongqing Natural Science Foundation(No.cstc2022ycjh-bgzxm0004)the Science and Technology Commission of Chongqing Municipality(CSTB2023NSCQ-LZX0006),respectively.
文摘Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to the correct parent node instead of treating leaf nodes as the final classification target.Second,error propagation occurs when a misclassification at a parent node propagates down the hierarchy,ultimately leading to inaccurate predictions at the leaf nodes.To address these limitations,we propose an uncertainty-guided HTC depth-aware model called DepthMatch.Specifically,we design an early stopping strategy with uncertainty to identify incomplete matching between text and labels,classifying them into the corresponding parent node labels.This approach allows us to dynamically determine the classification depth by leveraging evidence to quantify and accumulate uncertainty.Experimental results show that the proposed DepthMatch outperforms recent strong baselines on four commonly used public datasets:WOS(Web of Science),RCV1-V2(Reuters Corpus Volume I),AAPD(Arxiv Academic Paper Dataset),and BGC.Notably,on the BGC dataset,it improvesMicro-F1 andMacro-F1 scores by at least 1.09%and 1.74%,respectively.
基金supported by Universiti Sains Malaysia(USM)and School of Computer Sciences,USM。
文摘Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality.This involves eliminating irrelevant,redundant,and noisy features to streamline the classification process.Various methods,from single feature selection techniques to ensemble filter-wrapper methods,have been used in the literature.Metaheuristic algorithms have become popular due to their ability to handle optimization complexity and the continuous influx of text documents.Feature selection is inherently multi-objective,balancing the enhancement of feature relevance,accuracy,and the reduction of redundant features.This research presents a two-fold objective for feature selection.The first objective is to identify the top-ranked features using an ensemble of three multi-univariate filter methods:Information Gain(Infogain),Chi-Square(Chi^(2)),and Analysis of Variance(ANOVA).This aims to maximize feature relevance while minimizing redundancy.The second objective involves reducing the number of selected features and increasing accuracy through a hybrid approach combining Artificial Bee Colony(ABC)and Genetic Algorithms(GA).This hybrid method operates in a wrapper framework to identify the most informative subset of text features.Support Vector Machine(SVM)was employed as the performance evaluator for the proposed model,tested on two high-dimensional multiclass datasets.The experimental results demonstrated that the ensemble filter combined with the ABC+GA hybrid approach is a promising solution for text feature selection,offering superior performance compared to other existing feature selection algorithms.
文摘Social media has revolutionized the dissemination of real-life information,serving as a robust platform for sharing life events.Twitter,characterized by its brevity and continuous flow of posts,has emerged as a crucial source for public health surveillance,offering valuable insights into public reactions during the COVID-19 pandemic.This study aims to leverage a range of machine learning techniques to extract pivotal themes and facilitate text classification on a dataset of COVID-19 outbreak-related tweets.Diverse topic modeling approaches have been employed to extract pertinent themes and subsequently form a dataset for training text classification models.An assessment of coherence metrics revealed that the Gibbs Sampling Dirichlet Mixture Model(GSDMM),which utilizes trigram and bag-of-words(BOW)feature extraction,outperformed Non-negative Matrix Factorization(NMF),Latent Dirichlet Allocation(LDA),and a hybrid strategy involving Bidirectional Encoder Representations from Transformers(BERT)combined with LDA and K-means to pinpoint significant themes within the dataset.Among the models assessed for text clustering,the utilization of LDA,either as a clustering model or for feature extraction combined with BERT for K-means,resulted in higher coherence scores,consistent with human ratings,signifying their efficacy.In particular,LDA,notably in conjunction with trigram representation and BOW,demonstrated superior performance.This underscores the suitability of LDA for conducting topic modeling,given its proficiency in capturing intricate textual relationships.In the context of text classification,models such as Linear Support Vector Classification(LSVC),Long Short-Term Memory(LSTM),Bidirectional Long Short-Term Memory(BiLSTM),Convolutional Neural Network with BiLSTM(CNN-BiLSTM),and BERT have shown outstanding performance,achieving accuracy and weighted F1-Score scores exceeding 80%.These results significantly surpassed other models,such as Multinomial Naive Bayes(MNB),Linear Support Vector Machine(LSVM),and Logistic Regression(LR),which achieved scores in the range of 60 to 70 percent.
文摘We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach.
基金This research was funded by National Natural Science Foundation of China under Grant No.61806171Sichuan University of Science&Engineering Talent Project under Grant No.2021RC15+2 种基金Open Fund Project of Key Laboratory for Non-Destructive Testing and Engineering Computer of Sichuan Province Universities on Bridge Inspection and Engineering under Grant No.2022QYJ06Sichuan University of Science&Engineering Graduate Student Innovation Fund under Grant No.Y2023115The Scientific Research and Innovation Team Program of Sichuan University of Science and Technology under Grant No.SUSE652A006.
文摘While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.
文摘Text classification is an essential task for many applications related to the Natural Language Processing domain.It can be applied in many fields,such as Information Retrieval,Knowledge Extraction,and Knowledge modeling.Even though the importance of this task,Arabic Text Classification tools still suffer from many problems and remain incapable of responding to the increasing volume of Arabic content that circulates on the web or resides in large databases.This paper introduces a novel machine learning-based approach that exclusively uses hybrid(stylistic and semantic)features.First,we clean the Arabic documents and translate them to English using translation tools.Consequently,the semantic features are automatically extracted from the translated documents using an existing database of English topics.Besides,the model automatically extracts from the textual content a set of stylistic features such as word and character frequencies and punctuation.Therefore,we obtain 3 types of features:semantic,stylistic and hybrid.Using each time,a different type of feature,we performed an in-depth comparison study of nine well-known Machine Learning models to evaluate our approach and used a standard Arabic corpus.The obtained results show that Neural Network outperforms other models and provides good performances using hybrid features(F1-score=0.88%).
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R263)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR40.
文摘With a population of 440 million,Arabic language users form the rapidly growing language group on the web in terms of the number of Internet users.11 million monthly Twitter users were active and posted nearly 27.4 million tweets every day.In order to develop a classification system for the Arabic lan-guage there comes a need of understanding the syntactic framework of the words thereby manipulating and representing the words for making their classification effective.In this view,this article introduces a Dolphin Swarm Optimization with Convolutional Deep Belief Network for Short Text Classification(DSOCDBN-STC)model on Arabic Corpus.The presented DSOCDBN-STC model majorly aims to classify Arabic short text in social media.The presented DSOCDBN-STC model encompasses preprocessing and word2vec word embedding at the preliminary stage.Besides,the DSOCDBN-STC model involves CDBN based classification model for Arabic short text.At last,the DSO technique can be exploited for optimal modification of the hyperparameters related to the CDBN method.To establish the enhanced performance of the DSOCDBN-STC model,a wide range of simulations have been performed.The simulation results con-firmed the supremacy of the DSOCDBN-STC model over existing models with improved accuracy of 99.26%.
基金supported by National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2020040,ZDYF2021GXJS003)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant Nos.620MS021,621QN211)Science and Technology Development Center of the Ministry of Education Industry-University-Research Innovation Fund(2021JQR017).
文摘In the realm of Multi-Label Text Classification(MLTC),the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches.Many studies in semantic feature extraction have turned to external knowledge to augment the model’s grasp of textual content,often overlooking intrinsic textual cues such as label statistical features.In contrast,these endogenous insights naturally align with the classification task.In our paper,to complement this focus on intrinsic knowledge,we introduce a novel Gate-Attention mechanism.This mechanism adeptly integrates statistical features from the text itself into the semantic fabric,enhancing the model’s capacity to understand and represent the data.Additionally,to address the intricate task of mining label correlations,we propose a Dual-end enhancement mechanism.This mechanism effectively mitigates the challenges of information loss and erroneous transmission inherent in traditional long short term memory propagation.We conducted an extensive battery of experiments on the AAPD and RCV1-2 datasets.These experiments serve the dual purpose of confirming the efficacy of both the Gate-Attention mechanism and the Dual-end enhancement mechanism.Our final model unequivocally outperforms the baseline model,attesting to its robustness.These findings emphatically underscore the imperativeness of taking into account not just external knowledge but also the inherent intricacies of textual data when crafting potent MLTC models.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R263),Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR31)。
文摘The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic language has a lot of significance.For instance,it is the fourth mostly-used language on the internet and the sixth official language of theUnitedNations.However,there are few studies on the text classification process in Arabic.A few text classification studies have been published earlier in the Arabic language.In general,researchers face two challenges in the Arabic text classification process:low accuracy and high dimensionality of the features.In this study,an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning(AATC-HTHDL)model is proposed.The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text.The first step in the proposed model is to pre-process the input data to transform it into a useful format.The Term Frequency-Inverse Document Frequency(TF-IDF)model is applied to extract the feature vectors.Next,the Convolutional Neural Network with Recurrent Neural Network(CRNN)model is utilized to classify the Arabic text.In the final stage,the Crow Search Algorithm(CSA)is applied to fine-tune the CRNN model’s hyperparameters,showing the work’s novelty.The proposed AATCHTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches.
文摘Text classification is an essential task of natural language processing. Preprocessing, which determines the representation of text features, is one of the key steps of text classification architecture. It proposed a novel efficient and effective preprocessing algorithm with three methods for text classification combining the Orthogonal Matching Pursuit algorithm to perform the classification. The main idea of the novel preprocessing strategy is that it combined stopword removal and/or regular filtering with tokenization and lowercase conversion, which can effectively reduce the feature dimension and improve the text feature matrix quality. Simulation tests on the 20 newsgroups dataset show that compared with the existing state-of-the-art method, the new method reduces the number of features by 19.85%, 34.35%, 26.25% and 38.67%, improves accuracy by 7.36%, 8.8%, 5.71% and 7.73%, and increases the speed of text classification by 17.38%, 25.64%, 23.76% and 33.38% on the four data, respectively.
基金The National Natural Science Foundation of China(No.60473045)the Technology Research Project of Hebei Province(No.05213573)the Research Plan of Education Office of Hebei Province(No.2004406)
文摘To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.
文摘以编目分类和规则匹配为主的古籍文本主题分类方法存在工作效能低、专家知识依赖性强、分类依据单一化、古籍文本主题自动分类难等问题。对此,本文结合古籍文本内容和文字特征,尝试从古籍内容分类得到符合研究者需求的主题,推动数字人文研究范式的转型。首先,参照东汉古籍《说文解字》对文字的分析方式,以前期标注的古籍语料数据集为基础,构建全新的“字音(说)-原文(文)-结构(解)-字形(字)”四维特征数据集。其次,设计四维特征向量提取模型(speaking,word,pattern,and font to vector,SWPF2vec),并结合预训练模型实现对古籍文本细粒度的特征表示。再其次,构建融合卷积神经网络、循环神经网络和多头注意力机制的古籍文本主题分类模型(dianji-recurrent convolutional neural networks for text classification,DJ-TextRCNN)。最后,融入四维语义特征,实现对古籍文本多维度、深层次、细粒度的语义挖掘。在古籍文本主题分类任务上,DJ-TextRCNN模型在不同维度特征下的主题分类准确率均为最优,在“说文解字”四维特征下达到76.23%的准确率,初步实现了对古籍文本的精准主题分类。
基金Project(KC18071)supported by the Application Foundation Research Program of Xuzhou,ChinaProjects(2017YFC0804401,2017YFC0804409)supported by the National Key R&D Program of China
文摘The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.
基金This work supported in part by the National Natural Science Foundation of China under Grant 61872134,in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2062in part by Science and Technology Development Center of the Ministry of Education under Grant 2019J01020in part by the 2011 Collaborative Innovative Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province。
文摘Text classification has always been an increasingly crucial topic in natural language processing.Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion,data sparsity,limited generalization ability and so on.Based on deep learning text classification,this paper presents an extensive study on the text classification models including Convolutional Neural Network-Based(CNN-Based),Recurrent Neural Network-Based(RNN-based),Attention Mechanisms-Based and so on.Many studies have proved that text classification methods based on deep learning outperform the traditional methods when processing large-scale and complex datasets.The main reasons are text classification methods based on deep learning can avoid cumbersome feature extraction process and have higher prediction accuracy for a large set of unstructured data.In this paper,we also summarize the shortcomings of traditional text classification methods and introduce the text classification process based on deep learning including text preprocessing,distributed representation of text,text classification model construction based on deep learning and performance evaluation.
基金This work is supported by National Natural Science Foundation of China(61402225,61728204)Innovation Funding(NJ20160028,NT2018028,NS2018057)+1 种基金Aeronautical Science Foundation of China(2016551500)State Key Laboratory for smart grid protection and operation control Foundation,and the Science and Technology Funds from National State Grid Ltd.,China degree and Graduate Education Fund.
文摘Active learning has been widely utilized to reduce the labeling cost of supervised learning.By selecting specific instances to train the model,the performance of the model was improved within limited steps.However,rare work paid attention to the effectiveness of active learning on it.In this paper,we proposed a deep active learning model with bidirectional encoder representations from transformers(BERT)for text classification.BERT takes advantage of the self-attention mechanism to integrate contextual information,which is beneficial to accelerate the convergence of training.As for the process of active learning,we design an instance selection strategy based on posterior probabilities Margin,Intra-correlation and Inter-correlation(MII).Selected instances are characterized by small margin,low intra-cohesion and high inter-cohesion.We conduct extensive experiments and analytics with our methods.The effect of learner is compared while the effect of sampling strategy and text classification is assessed from three real datasets.The results show that our method outperforms the baselines in terms of accuracy.
基金Project (No. 60082003) supported by the National Natural Science Foundation of China
文摘This paper presents a new improved term frequency/inverse document frequency (TF-IDF) approach which uses confidence, support and characteristic words to enhance the recall and precision of text classification. Synonyms defined by a lexicon are processed in the improved TF-IDF approach. We detailedly discuss and analyze the relationship among confidence, recall and precision. The experiments based on science and technology gave promising results that the new TF-IDF approach improves the precision and recall of text classification compared with the conventional TF-IDF approach.
文摘The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descriptive way, to measure the stochastic dependency of discrete random variables. The measure method was used as a criterion to reduce high dimensionality of feature vectors in text classification on Web. Feature selections or conversions were performed by using maximum mutual information including linear and non-linear feature conversions. Entropy was used and extended to find right features commendably in pattern recognition systems. Favorable foundation would be established for text classification mining.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1067008)by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2019R1A6A1A03032119).
文摘Question-answering(QA)models find answers to a given question.The necessity of automatically finding answers is increasing because it is very important and challenging from the large-scale QA data sets.In this paper,we deal with the QA pair matching approach in QA models,which finds the most relevant question and its recommended answer for a given question.Existing studies for the approach performed on the entire dataset or datasets within a category that the question writer manually specifies.In contrast,we aim to automatically find the category to which the question belongs by employing the text classification model and to find the answer corresponding to the question within the category.Due to the text classification model,we can effectively reduce the search space for finding the answers to a given question.Therefore,the proposed model improves the accuracy of the QA matching model and significantly reduces the model inference time.Furthermore,to improve the performance of finding similar sentences in each category,we present an ensemble embedding model for sentences,improving the performance compared to the individual embedding models.Using real-world QA data sets,we evaluate the performance of the proposed QA matching model.As a result,the accuracy of our final ensemble embedding model based on the text classification model is 81.18%,which outperforms the existing models by 9.81%∼14.16%point.Moreover,in terms of the model inference speed,our model is faster than the existing models by 2.61∼5.07 times due to the effective reduction of search spaces by the text classification model.