The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this...The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.展开更多
The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections an...The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.展开更多
It's promising to use Software-Defined Networking(SDN) and Network Functions Virtualization(NFV) to integrate satellite and terrestrial networks. To construct network service function chains in such a multi-domain...It's promising to use Software-Defined Networking(SDN) and Network Functions Virtualization(NFV) to integrate satellite and terrestrial networks. To construct network service function chains in such a multi-domain environment, we propose a horizontal-based Multi-domain Service Function Chaining(Md-SFC) orchestration framework. In this framework, multi-domain orchestrators can coordinate with each other to guarantee the end-to-end service quality. Intra-domain orchestrators also coordinate SDN controllers and NFV management components to implement intra-domain service function chains. Based on this, we further propose a heuristic SFC mapping algorithm with a cooperative inter-domain path calculation method to map service function chains to infrastructures. In this method, master multi-domain orchestrator and intra-domain orchestrators coordinate to select proper inter-domain links. We compare the cooperative method with a naive uncooperative way that domains' topology information is provided to the master multi-domain orchestrator and it calculates the shortest inter-domain path between intra-domain service function chains directly. Simulation results demonstrate that our solution is feasible. It is able to construct end-to-end performance guaranteed service function chain by horizontal-based cooperation. The cooperative inter-domain path calculation method decreasesthe mapping load for the master orchestrator and gets the same end-to-end performance.展开更多
The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex vi...The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark.展开更多
This paper proposed a multi-domain virtual network embedding algorithm based on multi-controller SDN architecture. The local controller first selects candidate substrate nodes for each virtual node in the domain. Then...This paper proposed a multi-domain virtual network embedding algorithm based on multi-controller SDN architecture. The local controller first selects candidate substrate nodes for each virtual node in the domain. Then the global controller abstracts substrate network topology based on the candidate nodes and boundary nodes of each domain, and applies Particle Swarm Optimization Algorithm on it to divide virtual network requests. Each local controller then embeds the virtual nodes of the divided single-domain virtual network requests in the domain, and cooperates with other local controllers to embed the inter-domain virtual links. Simulation experimental results show that the proposed algorithm has good performance in reducing embedding cost with good stability and scalability.展开更多
Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation ...Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops. In this paper, the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models. A stability criterion of multi-domain composite simulation is established, and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation. The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations, and it is used here in simulation of the system composed of mechanical system and hydraulic system. The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model, and it is utilized here in simulation of the system composed of forging system, mechanical and hydraulic system. The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces, mechanical system and hydraulic system of a manipulator. The system dynamics simulation results show that curves of motion and force are continuous and convergent. This paper presents two algorithms, which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator, and play a key role in simulation efficiency and stability.展开更多
A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and hete...New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.展开更多
Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In dat...Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In data centers, energy issue is very important for the reality that data center energy consumption has increased by dozens of times in the last decade. In this paper, we are concerned about the cost-aware multi-domain virtual data center embedding problem. In order to solve this problem, this paper first addresses the energy consumption model. The model includes the energy consumption model of the virtual machine node and the virtual switch node, to quantify the energy consumption in the virtual data center embedding process. Based on the energy consumption model above, this paper presents a heuristic algorithm for cost-aware multi-domain virtual data center embedding. The algorithm consists of two steps: inter-domain embedding and intra-domain embedding. Inter-domain virtual data center embedding refers to dividing virtual data center requests into several slices to select the appropriate single data center. Intra-domain virtual data center refers to embedding virtual data center requests in each data center. We first propose an inter-domain virtual data center embedding algorithm based on label propagation to select the appropriate single data center. We then propose a cost-aware virtual data center embedding algorithm to perform the intra-domain data center embedding. Extensive simulation results show that our proposed algorithm in this paper can effectively reduce the energy consumption while ensuring the success ratio of embedding.展开更多
Inter-domain path computing is one big issue in multi-domain networks. The Hierarchical Path Computing Element (H-PCE) is a semi-central architecture for computing inter-domain path. To facilitate H-PCE in inter-domai...Inter-domain path computing is one big issue in multi-domain networks. The Hierarchical Path Computing Element (H-PCE) is a semi-central architecture for computing inter-domain path. To facilitate H-PCE in inter-domain path computing, this paper proposed a topology aggregation scheme to abstract the edge nodes and their connected inter-domain link as one vertex to achieve more optimal paths and confidentiality guarantee. The effectiveness of the scheme has been demonstrated on solving wavelength routing in multi-domain Wavelength Division Multiplexing (WDM) network via simulation. Simulation results show that this scheme reduces at least 10% inter-domain blocking probability, compared with the traditional Domain-to-the-Node (DtN) scheme.展开更多
Access control in multi-domain environments is an important question in building coalition between domains. Based on the RBAC access control model and the concepts of secure domain, the role delegation and role mappin...Access control in multi-domain environments is an important question in building coalition between domains. Based on the RBAC access control model and the concepts of secure domain, the role delegation and role mapping are proposed, which support the third-party authorization. A distributed RBAC model is then presented. Finally implementation issues are discussed.展开更多
In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establi...In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establishment of a multi-domain(energy,space,time)highresolution platform for integrated spectroscopy and microscopy characterizations,offering an unprecedented way to analyze materials in terms of spectral(energy)and spatial mapping as well as temporal evolution.We present several proof-of-principle results collected on this platform,including in-situ Raman imaging(high-resolution Raman,polarization Raman,low-wavenumber Raman),time-resolved photoluminescence imaging,and photoelectrical performance imaging.It can be envisioned that our newly established platform would be very powerful and effective in the multi-domain high-resolution characterizations of various materials of photoelectrochemical importance in the near future.展开更多
Collaborative f iltering, as one of the most popular techniques, plays an important role in recommendation systems. However,when the user-item rating matrix is sparse,its performance will be degenerate. Recently,domai...Collaborative f iltering, as one of the most popular techniques, plays an important role in recommendation systems. However,when the user-item rating matrix is sparse,its performance will be degenerate. Recently,domain-specific recommendation approaches have been developed to address this problem.The basic idea is to partition the users and items into overlapping domains, and then perform recommendation in each domain independently. Here, a domain means a group of users having similar preference to a group of products. However, these domain-specific methods consisting of two sequential steps ignore the mutual benefi t of domain segmentation and recommendation. Hence, a unified framework is presented to simultaneously realize recommendation and make use of the domain information underlying the rating matrix in this paper. Based on matrix factorization,the proposed model learns both user preferences of multiple domains and preference selection vectors to select relevant features for each group of products. Besides, local context information is utilized from the user-item rating matrix to enhance the new framework.Experimental results on two widely used datasets, e.g., Ciao and Epinions, demonstrate the effectiveness of our proposed model.展开更多
A two and a half dimensional(2.5D)multi-domain indirect boundary element method(IBEM)is developed to study the wave scattering of obliquely incident P-,SV-and SH-waves by a hill-valley staggered topography in a multi-...A two and a half dimensional(2.5D)multi-domain indirect boundary element method(IBEM)is developed to study the wave scattering of obliquely incident P-,SV-and SH-waves by a hill-valley staggered topography in a multi-layered half-space.The IBEM algorithm includes using 2.5D full-space and half-space Green’s functions to construct scattered fields in decomposed closed and opened half-space regions,respectively,and using the dynamic stiffness method to solve the free fields.All regions are finally integrated by introducing the compatibility conditions to obtain the total wave fields.The proposed 2.5D IBEM has the flexibility in dealing with complex boundaries by directly applying the fictitious loads on the regions’boundaries,with a less storage requirement compared to the full 3D models.Besides,by combining the specific advantages of the two kinds of Green’s functions,the method is well suitable for handling coupled topographies with high accuracy.The method is validated by comparison with published results for a single valley as well as a single hill topography.The effects of height-to-width ratio of hill and layering on dynamic responses are further parametrically investigated by numerical implementations in frequency domain.Results show that the interaction between valley and hills can lead to a more significant amplification within the valley region,and dynamic responses are deeply influenced by the height-to-width of hill,simultaneously depending on incident angle and frequency.Besides,the site effects become more complex when the stratification feature is taken into account.展开更多
During the evolution from cognitive radio to cognitive networks,the environment cognition extended from wireless environments to network and user environments.To understand the basic theory of Local Multi-Domain Cogni...During the evolution from cognitive radio to cognitive networks,the environment cognition extended from wireless environments to network and user environments.To understand the basic theory of Local Multi-Domain Cognition(LMDC),and to provide a theoretical basis for further study in cooperative multi-domain cognition and initiative multi-domain cognition,the LMDC is investigated in this paper.A Local Single-Domain Cognitive(LSDC)approach is first proposed based on multidimensional edge detection theory.This approach can divide the parameter space that describes the single-domain environment into different areas,and can represent each area with an identifier.Using this as a foundation,the single-domain environment is extended to multi-domain environments,and an LMDC approach is presented to describe the LMDC environment.The paper concludes by introducing two examples and the corresponding analysis to illustrate the feasibility of the proposed LMDC approach.展开更多
A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were li...A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were linked as the nodes according to the interface mode of MDCS.A DCT simulation model was established based on Matlab/Simdriveline,whose running process was accurately controlled by the designed control system.The playback system of vehicle state(VPS) was proposed whose input was the road-test data,with a real vehicle test environment for the development of transmission control unit(TCU) being provided.A DCT kinematic system model was set up,and the running status of DCT parts could be displayed in real time.The functions of MDCS were verified based on the extra-urban driving cycle(EUDC) and the vehicle road-test data respectively.The results show the functions of MDCS are accomplished,and the unified supporting platform for the development of TCU is achieved by MDCS.展开更多
Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the d...Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the deformation properties of complex fractured rock mass.It comprehends both the advantages of the discrete fracture network model and the equivalent continuum model to capture the features of discontinuities explicitly while reducing computational intensity.The complex fracture network is stochastically split into a number of subfracture networks according to the domain,length or angle.An analytical solution is derived to infer theoretically the relationship between the elastic moduli of the original complex fractured rock mass and the split subfractured rock masses by introducing a correction term based on the deformation superposition principle.Numerical simulations are conducted to determine the elastic moduli of split subfractured rock masses using universal distinct element code(UDEC),while the elastic modulus of the original model is estimated based on the currently proposed analytical relationship.The results show that the estimation accuracy with the current domainbased splitting model is far superior compared to those with the other two splitting models.Thus,the estimation method of elastic modulus of complex fractured rock mass based on domain splitting mode of fracture network is identified as the multi-domain equivalent method proposed in this paper.The reliability of this method is evaluated,and its high computational efficiency is demonstrated through exemplification with regard to different geometric configurations for stochastically artificial discrete fracture network.The proposed multi-domain equivalent method constructs the theoretical framework except for the regression analysis hypothesis compared to the density-reduced model equivalent method.展开更多
This paper proposes a method to formalize the interoperation in multi-domain environment. Through employing the algebra method, we conclude four types of the conflicts for the interoperation, and analyzes the cause of...This paper proposes a method to formalize the interoperation in multi-domain environment. Through employing the algebra method, we conclude four types of the conflicts for the interoperation, and analyzes the cause of the policy conflicts. For each type of conflicts, we formalize it and proposes the method of detection and resolution. Finally, the method is illuminated be effective through comparing our work with others.展开更多
The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions ...The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions but is limited by the sea bed, the body hull, and the part of the free surface excluding the body waterplane, and is subdivided into two subdomains according to the body geometry. The two subdomains are connected by a control surface in fluid. In each subdomain, the velocity potential is described by using the usual boundary integral representation involving Green functions. The boundary integral equations are then established by satisfying the boundary conditions and the continuous condition of the potential and the normal derivation across the control surface. This multi-domain boundary element method (MDBEM) is particularly interesting for bodies with a hull form including moonpools to which the usual BEM presents singularities and slow convergence of numerical results. The application of the MDBEM to study the resonant motion of a water column in moonpools shows that the MDBEM provides an efficient and reliable prediction method.展开更多
The secure interaction among multiple security domains is a major concern. In this paper, we highlight the issues of secure interoperability among multiple security domains operating under the widely accepted Role Bas...The secure interaction among multiple security domains is a major concern. In this paper, we highlight the issues of secure interoperability among multiple security domains operating under the widely accepted Role Based Access Control (RBAC) model. We propose a model called CRBAC that easily establishes a global policy for roles mapping among multiple security domains. Our model is based on an extension of the RBAC model. Also, multiple security domains were composed to one abstract security domain. Also roles in the multiple domains are translated to permissions of roles in the abstract security domain. These permissions keep theirs hierarchies. The roles in the abstract security domain implement roles mapping among the multiple security domains. Then, authorized users of any security domain can transparently access resources in the multiple domains.展开更多
文摘The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.
文摘The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.
基金supported by National High Technology of China ("863 program") under Grant No. 2015AA015702NSAF under Grant No.U1530118+1 种基金NSFC under Grant No.61602030National Basic Research Program of China ("973 program")under Grant No. 2013CB329101
文摘It's promising to use Software-Defined Networking(SDN) and Network Functions Virtualization(NFV) to integrate satellite and terrestrial networks. To construct network service function chains in such a multi-domain environment, we propose a horizontal-based Multi-domain Service Function Chaining(Md-SFC) orchestration framework. In this framework, multi-domain orchestrators can coordinate with each other to guarantee the end-to-end service quality. Intra-domain orchestrators also coordinate SDN controllers and NFV management components to implement intra-domain service function chains. Based on this, we further propose a heuristic SFC mapping algorithm with a cooperative inter-domain path calculation method to map service function chains to infrastructures. In this method, master multi-domain orchestrator and intra-domain orchestrators coordinate to select proper inter-domain links. We compare the cooperative method with a naive uncooperative way that domains' topology information is provided to the master multi-domain orchestrator and it calculates the shortest inter-domain path between intra-domain service function chains directly. Simulation results demonstrate that our solution is feasible. It is able to construct end-to-end performance guaranteed service function chain by horizontal-based cooperation. The cooperative inter-domain path calculation method decreasesthe mapping load for the master orchestrator and gets the same end-to-end performance.
基金supported in part by Open Foundation of State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2014B009)Fundamental Research Funds for the Central Universities (Grant Nos. N130817002, N150401002)+1 种基金Foundation of the Education Department of Liaoning Province (Grant No. L2014089)National Natural Science Foundation of China (Grant Nos. 61302070, 61401082, 61471109, 61502075, 91438110)
文摘The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark.
基金supported by "the Fundamental Research Funds for the Central Universities" of China University of Petroleum (East China) (Grant No. 18CX02139A)the National Natural Science Foundation of China (Grant No. 61471056)
文摘This paper proposed a multi-domain virtual network embedding algorithm based on multi-controller SDN architecture. The local controller first selects candidate substrate nodes for each virtual node in the domain. Then the global controller abstracts substrate network topology based on the candidate nodes and boundary nodes of each domain, and applies Particle Swarm Optimization Algorithm on it to divide virtual network requests. Each local controller then embeds the virtual nodes of the divided single-domain virtual network requests in the domain, and cooperates with other local controllers to embed the inter-domain virtual links. Simulation experimental results show that the proposed algorithm has good performance in reducing embedding cost with good stability and scalability.
基金supported by National Natural Science Foundation of China(Grant Nos.51075259,51121063,51305256)National Basic Research Program of China(973 Program,Grant No.2006CB705400)
文摘Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops. In this paper, the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models. A stability criterion of multi-domain composite simulation is established, and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation. The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations, and it is used here in simulation of the system composed of mechanical system and hydraulic system. The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model, and it is utilized here in simulation of the system composed of forging system, mechanical and hydraulic system. The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces, mechanical system and hydraulic system of a manipulator. The system dynamics simulation results show that curves of motion and force are continuous and convergent. This paper presents two algorithms, which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator, and play a key role in simulation efficiency and stability.
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.
文摘New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.
基金supported in part by the following funding agencies of China:National Natural Science Foundation under Grant 61602050 and U1534201National Key Research and Development Program of China under Grant 2016QY01W0200
文摘Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In data centers, energy issue is very important for the reality that data center energy consumption has increased by dozens of times in the last decade. In this paper, we are concerned about the cost-aware multi-domain virtual data center embedding problem. In order to solve this problem, this paper first addresses the energy consumption model. The model includes the energy consumption model of the virtual machine node and the virtual switch node, to quantify the energy consumption in the virtual data center embedding process. Based on the energy consumption model above, this paper presents a heuristic algorithm for cost-aware multi-domain virtual data center embedding. The algorithm consists of two steps: inter-domain embedding and intra-domain embedding. Inter-domain virtual data center embedding refers to dividing virtual data center requests into several slices to select the appropriate single data center. Intra-domain virtual data center refers to embedding virtual data center requests in each data center. We first propose an inter-domain virtual data center embedding algorithm based on label propagation to select the appropriate single data center. We then propose a cost-aware virtual data center embedding algorithm to perform the intra-domain data center embedding. Extensive simulation results show that our proposed algorithm in this paper can effectively reduce the energy consumption while ensuring the success ratio of embedding.
基金Acknowledgements This work was supported by Chang Jiang Scholars Program of the Ministry of Education of China, National Science Fund for Distinguished Young Scholars under Grant No.60725104 the National Basic Research Program of China under Grant No. 2007CB310706+2 种基金 the National Natural Science Foundation of China under Ca'ant No. 60932002, No. 60932005, No. 61071101 the Hi-Tech Research and Development Program of China under Grant No. 2009AA01Z254, No. 2009AA01Z215 NCEF Program of MoE of China, and Sichuan Youth Science and Technology Foundation under Crant No. 09ZQ026-032.
文摘Inter-domain path computing is one big issue in multi-domain networks. The Hierarchical Path Computing Element (H-PCE) is a semi-central architecture for computing inter-domain path. To facilitate H-PCE in inter-domain path computing, this paper proposed a topology aggregation scheme to abstract the edge nodes and their connected inter-domain link as one vertex to achieve more optimal paths and confidentiality guarantee. The effectiveness of the scheme has been demonstrated on solving wavelength routing in multi-domain Wavelength Division Multiplexing (WDM) network via simulation. Simulation results show that this scheme reduces at least 10% inter-domain blocking probability, compared with the traditional Domain-to-the-Node (DtN) scheme.
文摘Access control in multi-domain environments is an important question in building coalition between domains. Based on the RBAC access control model and the concepts of secure domain, the role delegation and role mapping are proposed, which support the third-party authorization. A distributed RBAC model is then presented. Finally implementation issues are discussed.
基金supported by the National Key Research and Development Program of China(No.2016YFA0200602,No.2017YFA0303500,and No.2018YFA0208702)the National Natural Science Foundation of China(No.21573211,No.21633007,No.21803067,and No.91950207)+1 种基金the Anhui Initiative in Quantum Information Technologies(AHY090200)the USTC-NSRL Joint Funds(UN2018LHJJ).
文摘In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establishment of a multi-domain(energy,space,time)highresolution platform for integrated spectroscopy and microscopy characterizations,offering an unprecedented way to analyze materials in terms of spectral(energy)and spatial mapping as well as temporal evolution.We present several proof-of-principle results collected on this platform,including in-situ Raman imaging(high-resolution Raman,polarization Raman,low-wavenumber Raman),time-resolved photoluminescence imaging,and photoelectrical performance imaging.It can be envisioned that our newly established platform would be very powerful and effective in the multi-domain high-resolution characterizations of various materials of photoelectrochemical importance in the near future.
基金supported in part by the Humanity&Social Science general project of Ministry of Education under Grants No.14YJAZH046National Science Foundation of China under Grants No.61402304the Beijing Educational Committee Science and Technology Development Planned under Grants No.KM201610028015
文摘Collaborative f iltering, as one of the most popular techniques, plays an important role in recommendation systems. However,when the user-item rating matrix is sparse,its performance will be degenerate. Recently,domain-specific recommendation approaches have been developed to address this problem.The basic idea is to partition the users and items into overlapping domains, and then perform recommendation in each domain independently. Here, a domain means a group of users having similar preference to a group of products. However, these domain-specific methods consisting of two sequential steps ignore the mutual benefi t of domain segmentation and recommendation. Hence, a unified framework is presented to simultaneously realize recommendation and make use of the domain information underlying the rating matrix in this paper. Based on matrix factorization,the proposed model learns both user preferences of multiple domains and preference selection vectors to select relevant features for each group of products. Besides, local context information is utilized from the user-item rating matrix to enhance the new framework.Experimental results on two widely used datasets, e.g., Ciao and Epinions, demonstrate the effectiveness of our proposed model.
文摘A two and a half dimensional(2.5D)multi-domain indirect boundary element method(IBEM)is developed to study the wave scattering of obliquely incident P-,SV-and SH-waves by a hill-valley staggered topography in a multi-layered half-space.The IBEM algorithm includes using 2.5D full-space and half-space Green’s functions to construct scattered fields in decomposed closed and opened half-space regions,respectively,and using the dynamic stiffness method to solve the free fields.All regions are finally integrated by introducing the compatibility conditions to obtain the total wave fields.The proposed 2.5D IBEM has the flexibility in dealing with complex boundaries by directly applying the fictitious loads on the regions’boundaries,with a less storage requirement compared to the full 3D models.Besides,by combining the specific advantages of the two kinds of Green’s functions,the method is well suitable for handling coupled topographies with high accuracy.The method is validated by comparison with published results for a single valley as well as a single hill topography.The effects of height-to-width ratio of hill and layering on dynamic responses are further parametrically investigated by numerical implementations in frequency domain.Results show that the interaction between valley and hills can lead to a more significant amplification within the valley region,and dynamic responses are deeply influenced by the height-to-width of hill,simultaneously depending on incident angle and frequency.Besides,the site effects become more complex when the stratification feature is taken into account.
基金supported in part by the State Key Program of National Natural Science Foundation of China under Grant No. 61231008the National Natural Science Foundation of China under Grant No. 61072068the program for Cheung Kong Scholars and Innovative Research Team in University under Grant IRT0852
文摘During the evolution from cognitive radio to cognitive networks,the environment cognition extended from wireless environments to network and user environments.To understand the basic theory of Local Multi-Domain Cognition(LMDC),and to provide a theoretical basis for further study in cooperative multi-domain cognition and initiative multi-domain cognition,the LMDC is investigated in this paper.A Local Single-Domain Cognitive(LSDC)approach is first proposed based on multidimensional edge detection theory.This approach can divide the parameter space that describes the single-domain environment into different areas,and can represent each area with an identifier.Using this as a foundation,the single-domain environment is extended to multi-domain environments,and an LMDC approach is presented to describe the LMDC environment.The paper concludes by introducing two examples and the corresponding analysis to illustrate the feasibility of the proposed LMDC approach.
基金Science and Technology Commission of Shanghai Municipality,China (No. 08dz1150401)
文摘A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were linked as the nodes according to the interface mode of MDCS.A DCT simulation model was established based on Matlab/Simdriveline,whose running process was accurately controlled by the designed control system.The playback system of vehicle state(VPS) was proposed whose input was the road-test data,with a real vehicle test environment for the development of transmission control unit(TCU) being provided.A DCT kinematic system model was set up,and the running status of DCT parts could be displayed in real time.The functions of MDCS were verified based on the extra-urban driving cycle(EUDC) and the vehicle road-test data respectively.The results show the functions of MDCS are accomplished,and the unified supporting platform for the development of TCU is achieved by MDCS.
基金financial support by the National Natural Science Foundation of China(Grant Nos.52008152,U1965204,52061160367,U2067203 and 52008153)Natural Science Foundation of Hebei Province of China(Grant No.E2021202087)Hebei Department of Human Resource(Grant No.E2020050015)。
文摘Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the deformation properties of complex fractured rock mass.It comprehends both the advantages of the discrete fracture network model and the equivalent continuum model to capture the features of discontinuities explicitly while reducing computational intensity.The complex fracture network is stochastically split into a number of subfracture networks according to the domain,length or angle.An analytical solution is derived to infer theoretically the relationship between the elastic moduli of the original complex fractured rock mass and the split subfractured rock masses by introducing a correction term based on the deformation superposition principle.Numerical simulations are conducted to determine the elastic moduli of split subfractured rock masses using universal distinct element code(UDEC),while the elastic modulus of the original model is estimated based on the currently proposed analytical relationship.The results show that the estimation accuracy with the current domainbased splitting model is far superior compared to those with the other two splitting models.Thus,the estimation method of elastic modulus of complex fractured rock mass based on domain splitting mode of fracture network is identified as the multi-domain equivalent method proposed in this paper.The reliability of this method is evaluated,and its high computational efficiency is demonstrated through exemplification with regard to different geometric configurations for stochastically artificial discrete fracture network.The proposed multi-domain equivalent method constructs the theoretical framework except for the regression analysis hypothesis compared to the density-reduced model equivalent method.
基金Supported by the National Natural Science Foundation of China (60403027)the Natural Science Foundation of Hubei Province (2005ABA258)Open Foundation of State Key Laboratory of Software Engineering ( SKLSE05-07)
文摘This paper proposes a method to formalize the interoperation in multi-domain environment. Through employing the algebra method, we conclude four types of the conflicts for the interoperation, and analyzes the cause of the policy conflicts. For each type of conflicts, we formalize it and proposes the method of detection and resolution. Finally, the method is illuminated be effective through comparing our work with others.
文摘The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions but is limited by the sea bed, the body hull, and the part of the free surface excluding the body waterplane, and is subdivided into two subdomains according to the body geometry. The two subdomains are connected by a control surface in fluid. In each subdomain, the velocity potential is described by using the usual boundary integral representation involving Green functions. The boundary integral equations are then established by satisfying the boundary conditions and the continuous condition of the potential and the normal derivation across the control surface. This multi-domain boundary element method (MDBEM) is particularly interesting for bodies with a hull form including moonpools to which the usual BEM presents singularities and slow convergence of numerical results. The application of the MDBEM to study the resonant motion of a water column in moonpools shows that the MDBEM provides an efficient and reliable prediction method.
基金Supported by the National Natural Science Foun-dation of China(60403027) the Natural Science Foundation of HubeiProvince(2005ABA258) the Open Foundation of State Key Labo-ratory of Software Engineering(SKLSE05-07)
文摘The secure interaction among multiple security domains is a major concern. In this paper, we highlight the issues of secure interoperability among multiple security domains operating under the widely accepted Role Based Access Control (RBAC) model. We propose a model called CRBAC that easily establishes a global policy for roles mapping among multiple security domains. Our model is based on an extension of the RBAC model. Also, multiple security domains were composed to one abstract security domain. Also roles in the multiple domains are translated to permissions of roles in the abstract security domain. These permissions keep theirs hierarchies. The roles in the abstract security domain implement roles mapping among the multiple security domains. Then, authorized users of any security domain can transparently access resources in the multiple domains.