The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept ...Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.展开更多
This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen d...This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.展开更多
Objective To investigate the safety and efficacy of a self-developed novel multi-electrode radiofrequency ablation catheter (Spark) for catheter-based renal denervation (RDN). Methods A total of 14 experimental mi...Objective To investigate the safety and efficacy of a self-developed novel multi-electrode radiofrequency ablation catheter (Spark) for catheter-based renal denervation (RDN). Methods A total of 14 experimental miniature pigs were randomly divided into four groups (55°& 5-watt, 55°& 8-watt, 65°& 5-watt, and 65° & 8-watt groups). Spark was used for left and right renal artery radiofrequency ablation. Blood samples collected from renal arteries and veins as well as renal arteriography were performed on all animals before, immediately after, and three months after procedure to evaluate the effects of Spark on the levels of plasma renin, aldosterone, angiotensin I, and angiotensin II as well as the pathological changes of renal arteries. Results One pig died of an anesthetic accident, 13 pigs successfully underwent the bilateral renal artery ablation. Compared with basic measurements, pigs in all the four groups had significantly decreased mean arterial pres- sure after procedure. Histopathological analysis showed that this procedure could result in intimal hyperplasia, significant peripheral sympa- thetic nerve damage in the renal arteries such as inflammatory cell infiltration and fibrosis in perineurium, uneven distribution of nerve fibers, tissue necrosis, severe vacuolization, fTagmented and unclear nucleoli myelin degeneration, sparse axons, and interruption of continuity. In addition, the renal artery radiofrequency ablation could significantly reduce the levels of plasma renin, aldosterone, angiotensin I, and angio- tensin II in pigs. Conclusions The results suggest that this type of multi-electrode catheter-based radiofrequency ablation could effectively remove peripheral renal sympathetic nerves and reduce the activity of systemic renin-angiotensin system in pigs, thus facilitating the control of systemic blood pressure in pigs.展开更多
Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can char...Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can charge water droplets and further enhance the water-collecting effect.This study proposes a novel multi-electrode collecting structure that can achieve efflcient and direction-independent water collection from fog.The multi-electrode structure consists of three parts:a charging electrode,an intercepting electrode and a ground electrode.Four types of watercollecting structures are compared experimentally,and the collection rates from a traditional fog mesh,a wire-mesh electrode with fog coming from a high-voltage electrode,a wire-mesh electrode with fog coming from a ground electrode and a multi-electrode structure are 2–3 g h^(-1),100–120 g h^(-1),60–80 g h^(-1)and 200–220 g h^(-1),respectively.The collection rate of the multielectrode structure is 100–150 times that of a traditional fog mesh and 2–4 times that of a wiremesh electrode.These results demonstrate the superiority of the multi-electrode structure in fog collection.In addition,the motion equation of charged droplets in an electric fleld is also derived,and the optimization strategy of electrode spacing is also discussed.This structure can be applied not only to fog collection,but also to air puriflcation,factory waste gas treatment and other flelds.展开更多
Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging tech...Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging technique using voltage indicator dyes or calcium indicator dyes. Especially, calcium imaging using fluorescent calcium indicator dyes is often more useful, because they exhibit larger changes in the fluorescence intensity than voltage indicator dyes and their fluorescence changes can be detect easily. Additionally, calcium signals play key roles in the brain function, such as the long-term potentiation (LTP) in the hippocampus, and calcium imaging can be a powerful tool to elucidate the brain function. In this study, we constructed a measurement apparatus combining the MEA system and laser confocal calcium imaging and simultaneously measured electric signals and calcium signals in acute mouse hippocampal slices. The obtained results showed the availability of the present method.展开更多
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wen...Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wenner,Schlumberger,Pole-pole and Dipole-dipole the authors established the model,by studying the result of the forward numerical simulation modeling and inverse modeling,and analyzed the differences among the different forms of detection devices.展开更多
A perfect bidirectional broadband visible light absorber composed of titanium nitride and tungsten nanodisk arrays is proposed.The average absorption of the absorber exceeds 89%at 400 nm–800 nm when light is normally...A perfect bidirectional broadband visible light absorber composed of titanium nitride and tungsten nanodisk arrays is proposed.The average absorption of the absorber exceeds 89%at 400 nm–800 nm when light is normally incident on the front-side.Illumination from the opposite direction(back-side)results in absorption of more than 75%.Through the theoretical analysis of the electric and magnetic fields,the physical mechanism of the broadband perfect absorption is attributed to the synergy of localized surface plasmons,propagating surface plasmons,and plasmonic resonant cavity modes.Furthermore,the absorber also exhibits excellent polarization-independence performance and a high angular tolerance of~30°for both front-and back-side incidence.The designed bidirectional broadband visible light absorber here has wide application prospects in the fields of solar cells and ink-free printing.展开更多
Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manne...Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manner under mild conditions still remains a formidable challenge.Herein,we develop a facile and universal strategy based on the sonochemistry approach for controllable and large-area growth of quasi-aligned single-crystalline ZnO nanosheets on a Zn substrate(Zn@SC-ZnO)under ambient conditions.The obtained ZnO nanosheets possess the desired exclusively exposed(001)facets,which have been confirmed to play a critical role in significantly reducing the activation energy and facilitating the stripping/plating processes of Zn.Accordingly,the constructed Zn@SC-ZnO||Zn@SC-ZnO symmetric cell has very low polarization overpotential down to~20 mV,with limited dendrite growth and side reactions for Zn anodes.The developed Zn@SC-ZnO//MnO_(2)aqueous Zn-ion batteries(ZIBs)show a voltage efficiency of 88.2%under 500 mA g^(-1)at the stage of 50%depth of discharge,which is state of the art for ZIBs reported to date.Furthermore,the as-assembled large-size cell(5 cm×5 cm)delivers an open circuit potential of 1.648 V,and can be robustly operated under a high current of 20 mA,showing excellent potential for future scalable applications.展开更多
Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li util...Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.展开更多
This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to reali...This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.展开更多
The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its el...TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs.展开更多
Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(...Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(Ni_(x)MoO_(y)NRs)framework;we found that the introduction of both isolated Rh SAs and Ni_(x)MoO_(y)NRs adjusts the electrocatalytic function of the host Mo_(2)C toward the direction of being an advanced and highly stable electrocatalyst for efficient hydrogen evolution at pH-universal conditions.As a result,the proposed catalyst outperforms most recently reported transition metal-based catalysts,and its performance even rivals that of commercial Pt/C,as demonstrated by its ultralow overpotentials of 31.7,109.7,and 95.4 mV at a current density of 10 mA cm^(-2),along with its small Tafel slopes of 42.4,51.2,and 46.8 mV dec^(-1)in acidic,neutral,and alkaline conditions,respectively.In addition,the catalyst shows remarkable long-term stability over all pH values with good maintenance of its catalytic activity and structural characteristics after continuous operation.展开更多
本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外...本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为中波1:6 ML InAs/7 ML GaSb和中波2:9 ML InAs/7 ML GaSb。焦平面阵列像元中心距为12μm。在80 K时测试,器件双波段的工作谱段为中波1:3~4μm,中波2:3.8~5.2μm。中波1器件平均峰值探测率达到6.32×10^(11) cm·Hz^(1/2)W^(-1),中波2器件平均峰值探测率达到2.84×10^(11) cm·Hz^(1/2)W^(-1)。红外焦平面偏压调节成像测试得到清晰的双波段成像。本文是国内首次报道1280×1024规模InAs/GaSb II类超晶格中/中波双色红外焦平面探测器。展开更多
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金financially supported by the National Natural Science Foundation of China(21972068,22072067,22232004)the High-level Talents Project of Jinling Institute of Technology(jit-b-202164)。
文摘Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.
基金supported the by Project of Key Science and Technology of Education Ministry (20050)the Natural Science Foundation of Gansu Province (3ZS041-A25-028)the Invention Project of Science & Technology (KJCXGC-01, NWNU), China
文摘This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.
文摘Objective To investigate the safety and efficacy of a self-developed novel multi-electrode radiofrequency ablation catheter (Spark) for catheter-based renal denervation (RDN). Methods A total of 14 experimental miniature pigs were randomly divided into four groups (55°& 5-watt, 55°& 8-watt, 65°& 5-watt, and 65° & 8-watt groups). Spark was used for left and right renal artery radiofrequency ablation. Blood samples collected from renal arteries and veins as well as renal arteriography were performed on all animals before, immediately after, and three months after procedure to evaluate the effects of Spark on the levels of plasma renin, aldosterone, angiotensin I, and angiotensin II as well as the pathological changes of renal arteries. Results One pig died of an anesthetic accident, 13 pigs successfully underwent the bilateral renal artery ablation. Compared with basic measurements, pigs in all the four groups had significantly decreased mean arterial pres- sure after procedure. Histopathological analysis showed that this procedure could result in intimal hyperplasia, significant peripheral sympa- thetic nerve damage in the renal arteries such as inflammatory cell infiltration and fibrosis in perineurium, uneven distribution of nerve fibers, tissue necrosis, severe vacuolization, fTagmented and unclear nucleoli myelin degeneration, sparse axons, and interruption of continuity. In addition, the renal artery radiofrequency ablation could significantly reduce the levels of plasma renin, aldosterone, angiotensin I, and angio- tensin II in pigs. Conclusions The results suggest that this type of multi-electrode catheter-based radiofrequency ablation could effectively remove peripheral renal sympathetic nerves and reduce the activity of systemic renin-angiotensin system in pigs, thus facilitating the control of systemic blood pressure in pigs.
基金supported by the National Key Research and Development Program of China(Nos.2016YFC0401002 and 2016YFC0401006)National Natural Science Foundation of China(Nos.51577080 and 51821005)。
文摘Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can charge water droplets and further enhance the water-collecting effect.This study proposes a novel multi-electrode collecting structure that can achieve efflcient and direction-independent water collection from fog.The multi-electrode structure consists of three parts:a charging electrode,an intercepting electrode and a ground electrode.Four types of watercollecting structures are compared experimentally,and the collection rates from a traditional fog mesh,a wire-mesh electrode with fog coming from a high-voltage electrode,a wire-mesh electrode with fog coming from a ground electrode and a multi-electrode structure are 2–3 g h^(-1),100–120 g h^(-1),60–80 g h^(-1)and 200–220 g h^(-1),respectively.The collection rate of the multielectrode structure is 100–150 times that of a traditional fog mesh and 2–4 times that of a wiremesh electrode.These results demonstrate the superiority of the multi-electrode structure in fog collection.In addition,the motion equation of charged droplets in an electric fleld is also derived,and the optimization strategy of electrode spacing is also discussed.This structure can be applied not only to fog collection,but also to air puriflcation,factory waste gas treatment and other flelds.
文摘Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging technique using voltage indicator dyes or calcium indicator dyes. Especially, calcium imaging using fluorescent calcium indicator dyes is often more useful, because they exhibit larger changes in the fluorescence intensity than voltage indicator dyes and their fluorescence changes can be detect easily. Additionally, calcium signals play key roles in the brain function, such as the long-term potentiation (LTP) in the hippocampus, and calcium imaging can be a powerful tool to elucidate the brain function. In this study, we constructed a measurement apparatus combining the MEA system and laser confocal calcium imaging and simultaneously measured electric signals and calcium signals in acute mouse hippocampal slices. The obtained results showed the availability of the present method.
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
基金Supported by Project of the National High Technology Research and Development Program of China(No.2007AA06Z215)
文摘Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wenner,Schlumberger,Pole-pole and Dipole-dipole the authors established the model,by studying the result of the forward numerical simulation modeling and inverse modeling,and analyzed the differences among the different forms of detection devices.
基金the National Key Research and Development Program(Grant No.2022YFB2804602)Shanghai Pujiang Program(Grant No.21PJD048).
文摘A perfect bidirectional broadband visible light absorber composed of titanium nitride and tungsten nanodisk arrays is proposed.The average absorption of the absorber exceeds 89%at 400 nm–800 nm when light is normally incident on the front-side.Illumination from the opposite direction(back-side)results in absorption of more than 75%.Through the theoretical analysis of the electric and magnetic fields,the physical mechanism of the broadband perfect absorption is attributed to the synergy of localized surface plasmons,propagating surface plasmons,and plasmonic resonant cavity modes.Furthermore,the absorber also exhibits excellent polarization-independence performance and a high angular tolerance of~30°for both front-and back-side incidence.The designed bidirectional broadband visible light absorber here has wide application prospects in the fields of solar cells and ink-free printing.
基金the National Natural Science Foundation of China(NSFC,Grant No.51972178)the Natural Science Foundation of Ningbo(2022J139)the Ningbo Yongjiang Talent Introduction Programme(2022A-227-G).
文摘Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manner under mild conditions still remains a formidable challenge.Herein,we develop a facile and universal strategy based on the sonochemistry approach for controllable and large-area growth of quasi-aligned single-crystalline ZnO nanosheets on a Zn substrate(Zn@SC-ZnO)under ambient conditions.The obtained ZnO nanosheets possess the desired exclusively exposed(001)facets,which have been confirmed to play a critical role in significantly reducing the activation energy and facilitating the stripping/plating processes of Zn.Accordingly,the constructed Zn@SC-ZnO||Zn@SC-ZnO symmetric cell has very low polarization overpotential down to~20 mV,with limited dendrite growth and side reactions for Zn anodes.The developed Zn@SC-ZnO//MnO_(2)aqueous Zn-ion batteries(ZIBs)show a voltage efficiency of 88.2%under 500 mA g^(-1)at the stage of 50%depth of discharge,which is state of the art for ZIBs reported to date.Furthermore,the as-assembled large-size cell(5 cm×5 cm)delivers an open circuit potential of 1.648 V,and can be robustly operated under a high current of 20 mA,showing excellent potential for future scalable applications.
基金supported by the National Natural Science Foundation of China(31870570)the Science and Technology Plan of Fujian Provincial,China(2020H4026,2022G02020 and 2022H6002)+1 种基金the Science and Technology Plan of Xiamen(3502Z20203005)the Scientific Research Start-up Funding for Special Professor of Minjiang Scholars。
文摘Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.
文摘This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
基金the support from the Brook Byers Institute for Sustainable Systems,Hightower ChairGeorgia Research Alliance at the Georgia Institute of Technology。
文摘TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs.
基金Supported from the Regional Leading Research Center Program(2019R1A5A8080326)through the National Research Foundation funded by the Ministry of Science and ICT of Republic of Korea.
文摘Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(Ni_(x)MoO_(y)NRs)framework;we found that the introduction of both isolated Rh SAs and Ni_(x)MoO_(y)NRs adjusts the electrocatalytic function of the host Mo_(2)C toward the direction of being an advanced and highly stable electrocatalyst for efficient hydrogen evolution at pH-universal conditions.As a result,the proposed catalyst outperforms most recently reported transition metal-based catalysts,and its performance even rivals that of commercial Pt/C,as demonstrated by its ultralow overpotentials of 31.7,109.7,and 95.4 mV at a current density of 10 mA cm^(-2),along with its small Tafel slopes of 42.4,51.2,and 46.8 mV dec^(-1)in acidic,neutral,and alkaline conditions,respectively.In addition,the catalyst shows remarkable long-term stability over all pH values with good maintenance of its catalytic activity and structural characteristics after continuous operation.
文摘本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为中波1:6 ML InAs/7 ML GaSb和中波2:9 ML InAs/7 ML GaSb。焦平面阵列像元中心距为12μm。在80 K时测试,器件双波段的工作谱段为中波1:3~4μm,中波2:3.8~5.2μm。中波1器件平均峰值探测率达到6.32×10^(11) cm·Hz^(1/2)W^(-1),中波2器件平均峰值探测率达到2.84×10^(11) cm·Hz^(1/2)W^(-1)。红外焦平面偏压调节成像测试得到清晰的双波段成像。本文是国内首次报道1280×1024规模InAs/GaSb II类超晶格中/中波双色红外焦平面探测器。