期刊文献+
共找到15,535篇文章
< 1 2 250 >
每页显示 20 50 100
High‑Entropy Layered Oxide Cathode Enabling High‑Rate for Solid‑State Sodium‑Ion Batteries 被引量:3
1
作者 Tianxun Cai Mingzhi Cai +5 位作者 Jinxiao Mu Siwei Zhao Hui Bi Wei Zhao Wujie Dong Fuqiang Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期160-171,共12页
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit... Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries. 展开更多
关键词 High-entropy High-rate performance Li-TM interaction Air stability O3 layered oxide cathode
下载PDF
A defective iron-based perovskite cathode for high-performance IT-SOFCs:Tailoring the oxygen vacancies using Nb/Ta co-doping 被引量:2
2
作者 Bayu Admasu Beshiwork Xinyu Wan +6 位作者 Min Xu Haoran Guo Birkneh Sirak Teketel Yu Chen Jun Song Chen Tingshuai Li Enrico Traversa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期306-316,I0008,共12页
The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable ... The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory(DFT)calculations by co-doping with Nb and Ta the B-site of the SrFeO_(3-δ)perovskite oxide.The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO_(3-δ)and help electron transfer.In symmetrical cells,such cathode with a SrFe_(0.8)Nb_(0.1)Ta_(0.1)O_(3-δ)(SFNT)detailed formula achieves a low cathode polarization resistance of 0.147Ωcm^(2) at 650℃.Electron spin resonance(ESR)and X-ray photoelectron spectroscopy(XPS)analysis confirm that the co-doping of Nb/Ta in SrFeO_(3-δ)B-site increases the balanced concentration of oxygen vacancies,enhancing the electrochemical performance when compared to 20 mol%Nb single-doped perovskite oxide.The cathode button cell with NiSDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm^(-2)at 650℃.Moreover,the button cell shows durability for 110 h under 0.65 V at 600℃ using wet H_(2) as fuel. 展开更多
关键词 Solid oxide fuel cell cathode Oxygen reduction reaction Power density DFT calculation
下载PDF
New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries 被引量:1
3
作者 Qiang Han Lele Cai +3 位作者 Zhaofeng Yang Yanjie Hu Hao Jiang Chunzhong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期556-564,共9页
Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in uns... Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes. 展开更多
关键词 Single-crystalline cathode Ni-rich oxides Pre-lithiation Li-ion batteries Surface modification
下载PDF
Manipulating Na occupation and constructing protective film of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2) as long-term cycle stability cathode for sodium-ion batteries 被引量:1
4
作者 Yiran Sun Pengfei Zhou +7 位作者 Siyu Liu Zhongjun Zhao Yihao Pan Xiangyan Shen Xiaozhong Wu Jinping Zhao Junying Weng Jin Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期603-611,I0013,共10页
P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformati... P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs. 展开更多
关键词 Layered cathode Zn/Ti co-doping Na occupation Electrolyte additive Sodium-ion batteries
下载PDF
Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage 被引量:1
5
作者 Quanqing Zhao Ruru Wang +5 位作者 Ming Gao Bolin Liu Jianfeng Jia Haishun Wu Youqi Zhu Chuanbao Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期421-427,I0010,共8页
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ... The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries. 展开更多
关键词 Sodium ion battery Oxide cathode Phase engineering Phase diagram Na~+kinetic
下载PDF
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries 被引量:1
6
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type cathode materials Sodium-ion batteries Layered structure
下载PDF
Suppressed Internal Intrinsic Stress Engineering in High-Performance Ni-Rich Cathode Via Multi layered In Situ Coating Structure 被引量:1
7
作者 Jiachao Yang Yunjiao Li +3 位作者 Xiaoming Xi Junchao Zheng Jian Yu Zhenjiang He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期58-66,共9页
LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni... LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material. 展开更多
关键词 compensating doped in situ coating multilayer material Ni-rich cathode materials suppressed internal strain
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
8
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Preferentially selective extraction of lithium from spent LiCoO_(2)cathodes by medium-temperature carbon reduction roasting 被引量:1
9
作者 Daixiang Wei Wei Wang +6 位作者 Longjin Jiang Zhidong Chang Hualei Zhou Bin Dong Dekun Gao Minghui Zhang Chaofan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期315-322,共8页
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv... Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries. 展开更多
关键词 spent LiCoO_(2)cathodes medium-temperature carbon reduction lithium extraction priority crystal transformation macro-scopic transport resistance
下载PDF
Tuning Li/Ni mixing by reactive coating to boost the stability of cobalt-free Ni-rich cathode 被引量:1
10
作者 Fanghui Du Xitong Zhang +7 位作者 Yingchao Wang Lei Ding Pengfang Zhang Lingyang Liu Dong Wang Jianzong Man Yuling Chen Yunwu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期20-29,I0002,共11页
Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective s... Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials. 展开更多
关键词 Cobalt-free Ni-rich cathode Li/Ni mixing Al doping Li_(3)PO_(4) coating Lithium-ion batteries
下载PDF
Enhancing thermodynamic stability of single-crystal Ni-rich cathode material via a synergistic dual-substitution strategy
11
作者 Jixue Shen Hui Li +6 位作者 Haoyu Qi Zhan Lin Zeheng Li Chuanbo Zheng Weitong Du Hao Chen Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期428-436,I0010,共10页
Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance ... Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization. 展开更多
关键词 Ni-rich cathode Single crystalline Dual-substitution strategy High-temperature cathode Li-ion batteries
下载PDF
Corrigendum to“Anthraquinone derivatives supported by Ti_(3)C_(2)(MXene)as cathode materials for aluminum-organic batteries”[J.Energy Chem.74(2022)174–183]
12
作者 Gaohong Wu Cuncai Lv +3 位作者 Wenrong Lv Xiaoxiao Li Wenming Zhang Zhanyu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期685-685,共1页
The authors regret that the printed version of the above article contained an error reference.We hope to correct it here.[14]B.J.M.Christophe Legein,Franck Fayon,Angew.Chem.Int.Ed.,132(2020)19409–19415.
关键词 MXene cathode error
下载PDF
Influence of the position relationship between the cathode and magnetic separatrix on the discharge process of a Hall thruster
13
作者 曹希峰 麻洪宁 +4 位作者 夏国俊 刘辉 赵方舟 王宇航 陈巨辉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期74-81,共8页
Previous studies have shown that there is an obvious coupling relationship between the installation location of the external cathode and the magnetic separatrix in the plume region of a Hall thruster.In this paper,the... Previous studies have shown that there is an obvious coupling relationship between the installation location of the external cathode and the magnetic separatrix in the plume region of a Hall thruster.In this paper,the particle-in-cell simulation method is used to compare the thruster discharge process under the conditions of different position relationships between the cathode and the magnetic separatrix.By comparing the distribution of electron conduction,potential,plasma density and other microscopic parameters,we try to explain the formation mechanism of the discharge difference.The simulation results show that the cathode inside and outside the magnetic separatrix has a significant effect on the distribution of potential and plasma density.When the cathode is located on the outer side of the magnetic separatrix,the potential above the plume region is relatively low,and there is a strong potential gradient above the plume region.This potential gradient is more conducive to the radial diffusion of ions above the plume,which is the main reason for the strong divergence of the plume.The distribution of ion density is also consistent with the distribution of potential.When the cathode is located on the outer side of the magnetic separatrix,the radial diffusion of ions in the plume region is enhanced.Meanwhile,by comparing the results of electron conduction,it is found that the traiectories of electrons emitted from the cathode are significantly different between the inner and outer sides of the magnetic separatrix.This is mainly because the electrons are affected by the magnetic mirror effect of the magnetic tip,which makes it difficult for the electrons to move across the magnetic separatrix.This is the main reason for the difference in potential distribution.In this paper,the simulation results of macroscopic parameters under several conditions are also compared,and they are consistent with the experimental results.The cathode is located on the inner side of the magnetic separatrix,which can effectively reduce the plume divergence angle and improve the thrust.In this paper,the cathode moves from R=50 mm to R=35 mm along the radial direction,the thrust increases by 3.6 mN and the plume divergence angle decreases by 23.77%.Combined with the comparison of the ionization region and the peak ion density,it is found that the main reason for the change in thrust is the change in the radial diffusion of ions in the plume region. 展开更多
关键词 Hall thruster cathode magnetic separatrix
下载PDF
Impact of Transition Metal Layer Vacancy on the Structure and Performance of P2 Type Layered Sodium Cathode Material
14
作者 Orynbay Zhanadilov Sourav Baiju +7 位作者 Natalia Voronina Jun Ho Yu A.-Yeon Kim Hun‑Gi Jung Kyuwook Ihm Olivier Guillon Payam Kaghazchi Seung‑Taek Myung 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期340-358,共19页
This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances t... This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries. 展开更多
关键词 Layered oxide Oxygen evolution Sodium battery VACANCY cathode
下载PDF
Effect of crystal morphology of ultrahigh-nickel cathode materials on high temperature electrochemical stability of lithium ion batteries
15
作者 Bi Luo Hui Li +5 位作者 Haoyu Qi Yun Liu Chuanbo Zheng Weitong Du Jiafeng Zhang Lai Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期327-335,I0008,共10页
Higher nickel content endows Ni-rich cathode materials LiNi_(x)Co_yMn_(1-x-y)O_(2)(x>0.6)with higher specific capacity and high energy density,which is regarded as the most promising cathode materials for Li-ion ba... Higher nickel content endows Ni-rich cathode materials LiNi_(x)Co_yMn_(1-x-y)O_(2)(x>0.6)with higher specific capacity and high energy density,which is regarded as the most promising cathode materials for Li-ion batteries.However,the deterioration of structural stability hinders its practical application,especially under harsh working conditions such as high-temperature cycling.Given these circumstances,it becomes particularly critical to clarify the impact of the crystal morphology on the structure and high-temperature performance as for the ultrahigh-nickel cathodes.Herein,we conducted a comprehensive comparison in terms of microstructure,high-temperature long-cycle phase evolution,and high-temperature electrochemical stability,revealing the differences and the working mechanisms among polycrystalline(PC),single-crystalline(SC)and Al doped SC ultrahigh-nickel materials.The results show that the PC sample suffers a severe irreversible phase transition along with the appearance of microcracks,resulting a serious decay of both average voltage and the energy density.While the Al doped SC sample exhibits superior cycling stability with intact layered structure.In-situ XRD and intraparticle structural evolution characterization reveal that Al doping can significantly alleviate the irreversible phase transition,thus inhibiting microcracks generation and enabling enhanced structure.Specifically,it exhibits excellent cycling performance in pouch-type full-cell with a high capacity retention of 91.8%after 500 cycles at 55℃.This work promotes the fundamental understanding on the correlation between the crystalline morphology and high-temperature electrochemical stability and provides a guide for optimization the Ni-rich cathode materials. 展开更多
关键词 SINGLE-CRYSTALLINE Ultrahigh-nickel cathode High-temperature performance Phase evolution
下载PDF
Cation-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode with high rate performance
16
作者 Long Zhang Dongsheng Yang +7 位作者 Lilei Miao Chunmeng Zhang Jiexiang Li Jiawei Wen Chunxia Wang Tiantian Cao Guoyong Huang Shengming Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期139-148,共10页
The nickel-rich layered cathode material LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)has high energy density,lower cost and is a promising cathode material currently under development.However,its electrochemical and struct... The nickel-rich layered cathode material LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)has high energy density,lower cost and is a promising cathode material currently under development.However,its electrochemical and structural stability is poor during cycling.Among the many modification methods,cation doping has been consistently proven to be an effective strategy for enhancing electrochemical performance.Herein,the NCM811 cathode material was modified by solid-phase reactions with Mg and Al doped.In addition,the corresponding mechanism of NCM811 cathode material-doped modification is explored by density functional theory(DFT)calculations,and we have extended this approach to other ternary cathode materials with different ratios and obtained universal laws.Combined with DFT calculations,the results show that Mg2+occupies the Li+site and reduces the degree of Li^(+)/Ni^(2+) mixture;Al^(3+) acts as a structural support during charging and discharging to prevent structural collapse.The electrochemical properties were tested by an electrochemical workstation and the LAND system,and the results showed that the capacity retention rate increased to varying degrees from 63.66%to 69.87%and 89.05%for NCM811-Mg and NCM811-Al at room temperature after 300 cycles,respectively.This study provides a theoretical basis and design strategy for commercializing cationic-doped modification of nickel-rich cathode materials. 展开更多
关键词 Li-ion batteries cathode materials DOPED Electrochemical properties DFT calculation
下载PDF
Plasma potential measurements using an emissive probe made of oxide cathode
17
作者 李建泉 马海杰 陆文琪 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期571-577,共7页
A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life.The properties of the novel emissive probe are investigated in detail,in comparis... A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life.The properties of the novel emissive probe are investigated in detail,in comparison with a traditional tungsten emissive probe,including the operating temperature,the electron emission capability and the plasma potential measurement.Studies of the operating temperature and electron emission capability show that the tungsten emissive probe usually works at a temperature of 1800 K-2200 K while the oxide cathode emissive probe can function at about 1200 K-1400 K.In addition,plasma potential measurements using the oxide cathode emissive probe with different techniques have been accomplished in microwave electron cyclotron resonance plasmas with different discharge powers.It is found that a reliable plasma potential can be obtained using the improved inflection point method and the hot probe with zero emission limit method,while the floating point method is invalid for the oxide cathode emissive probe. 展开更多
关键词 emissive probe oxide cathode plasma potential filament temperature
下载PDF
Phase engineering of Ni-Mn binary layered oxide cathodes for sodiumion batteries
18
作者 Feifei Hong Xin Zhou +9 位作者 Xiaohong Liu Guilin Feng Heng Zhang Weifeng Fan Bin Zhang Meihua Zuo Wangyan Xing Ping Zhang Hua Yan Wei Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期501-511,共11页
Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Dive... Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Diverse composite materials with various phase structures of P3,P2/P3,P2,P2/O3,and P2/P3/O3 were synthesized by manipulating the sodium content and calcination conditions,leading to the construction of a synthetic phase diagram for Na_(x)Ni_(0.25)Mn_(0.75)O_(2)(0.45≤x≤1.1).Then,we compared the electrochemical characteristics and structural evolution during the desodiation/sodiation process of P2,P2/P3,P2/03,and P2/P3/O3-Na_(x)Ni_(0.25)Mn_(0.75)O_(2).Among them,P2/P3-Na0.75Ni0.25Mn0.75O2exhibits the best rate capability of 90.9 mA h g^(-1)at 5 C,with an initial discharge capacity of 142.62 mA h g^(-1)at 0.1 C and a capacity retention rate of 78.25%after 100 cycles at 1 C in the voltage range of 2-4.3 V.The observed superior sodium storage performance of P2/P3 hybrids compared to other composite phases can be attributed to the enhanced Na^(+)transfer dynamic,reduction of the Jahn-teller effect,and improved reaction reversibility induced by the synergistic effect of P2 and P3 phases.The systematic research and exploration of phases in Na_(x)Ni_(0.25)Mn_(0.75)O_(2)provide new sights into high-performance nickel-manganese binary layered oxide for sodium-ion batteries. 展开更多
关键词 Phase engineering Ni-Mn layered oxide cathode Sodium-ion batteries
下载PDF
Advances in cathode materials for Li-O_(2)batteries
19
作者 Pengcheng Xing Patrick Sanglier +3 位作者 Xikun Zhang Jing Li Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期126-167,I0004,共43页
Lithium-oxygen(Li-O_(2))batteries have attracted significant attention due to their ultra-high theoretical energy density.However,serious challenges,such as potential lag,low-rate capability,round-trip efficiency,and ... Lithium-oxygen(Li-O_(2))batteries have attracted significant attention due to their ultra-high theoretical energy density.However,serious challenges,such as potential lag,low-rate capability,round-trip efficiency,and poor cycle stability,greatly limit their practical application.This review provides a comprehensive account of the development of Li-O_(2)batteries,elucidates the current discharge/charge mechanism,and highlights both the advantages and bottlenecks of this technology.In particular,recent research progress on various cathode materials,such as carbon-based materials,noble metals,and non-noble metals,for Li-O_(2)batteries is deeply reviewed,emphasizing the impact of design strategies,material structures,chemical compositions,and microphysical parameters on oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)kinetics,as well as discharge products and overall battery performance.This review will also shed light on future research directions for oxygen electrode catalysts and material construction to facilitate the development of Li-O_(2)batteries with maximized electrochemical performance. 展开更多
关键词 Li-O_(2)batteries Mechanism cathode OER ORR
下载PDF
Reversible Mn^(2+)/Mn^(4+)double-electron redox in P3-type layer-structured sodium-ion cathode
20
作者 Jie Zeng Jian Bao +8 位作者 Ya Zhang Xun-Lu Li Cui Ma Rui-Jie Luo Chong-Yu Du Xuan Xu Zhe Mei Zhe Qian Yong-Ning Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期79-88,I0004,共11页
The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can cont... The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can contribute extra capacity to increase energy density,but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release.In this work,reversible Mn^(2+)/Mn^(4+)redox is realized in a P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)cathode material with high specific capacity and structure stability via Co substitution.The contribution of oxygen redox is suppressed significantly by reversible Mn^(2+)/Mn^(4+)redox without sacrificing capacity,thus reducing lattice oxygen release and improving the structure stability.Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5-4.5 V vs.Na^(+)/Na even at 10 C and after long-term cycling.It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range.The synergistic contributions of Mn^(2+)/Mn^(4+),Co^(2+)/Co^(3+),and O^(2-)/(O_n)^(2-)redox in P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)lead to a high reversible capacity of 215.0 m A h g^(-1)at 0.1 C with considerable cycle stability.The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries. 展开更多
关键词 Sodium batteries cathode materials Layered structure Co substitution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部