Rice bacterial leaf brown spot disease caused by Pseudomonas syringae pv.syringae(Pss)is a major disease on rice.In recent years,Pss has emerged worldwide,seriously affecting rice production.It is very important to es...Rice bacterial leaf brown spot disease caused by Pseudomonas syringae pv.syringae(Pss)is a major disease on rice.In recent years,Pss has emerged worldwide,seriously affecting rice production.It is very important to establish a rapid detection method of Pss for the diagnosis and prevention of this disease.In order to robust and accurately diagnose the rice bacterial leaf brown spot disease in the field and laboratory,an assay system for the Pss was developed in this study,and the specific sequence of hrcN was used as the target,based on loop-mediated isothermal amplification(LAMP).The best detection system was MgSO 48 mmol·L^(-1),Bst DNA polymerase 8 U,dNTP 1.4 mmol·L^(-1),the ratio of internal and outer primers was 2:1,the reaction temperature was 63℃,the reaction time was 45 min,and the lowest sensitivity was 104 CFU·mL^(-1).This results provided an accurate and robust method for laboratory and field diagnosis of bacterial leaf brown spot disease of rice.展开更多
[ Objective] To develop a rapid and visualized detection method of classical swine fever virus (CSFV) using reverse transcriptase loopmediated isothermal amplification (RT-LAMP). [ Method ] A total of six special ...[ Objective] To develop a rapid and visualized detection method of classical swine fever virus (CSFV) using reverse transcriptase loopmediated isothermal amplification (RT-LAMP). [ Method ] A total of six special primers were designed based on the conserved sequences of CSFV gene. After optimizing, the reaction of RT-LAMP was carded out at 63℃ for 45 rain. The RT-LAMP products were analyzed by agarose gel electro- phoresis. The sensitivity, specificity and repeatability were verified, respectively. [ Result] The RT-LAMP method could be used for detecting CSFV rather than six generic viruses. The sensitivity of RT-LAMP was 100 times higher than that of RT-PCR. The detection of 27 clinical samples by RT- LAMP and RT-PCR showed that RT-LAMP is more reliable and convenient. [ Conclusion] The RT-LAMP method is sensitive and reliable for the detection of CSFV.展开更多
Pseudomonas aeruginosa(PA)is an opportunistic pathogen of humans and animals and a common source of nosocomial infections especially of the respiratory tract.Pseudomonas aeruginosa is also a major bacterial disease of...Pseudomonas aeruginosa(PA)is an opportunistic pathogen of humans and animals and a common source of nosocomial infections especially of the respiratory tract.Pseudomonas aeruginosa is also a major bacterial disease of poultry and in particular,eggs and newly hatched chicks.In this study,we developed a simple,accurate and rapid molecular detection method using cross priming amplification(CPA)with a nucleic acid test strip to detect P.aeruginosa.The assay efficiently amplified the target gene within 45 min at 62℃only using a simple water bath.The detection limit of the method was 1.18x 102 copiesμL^-1 for plasmid DNA and 4.4 CFU mL^-1 for bacteria in pure culture,and was 100 times more sensitive than conventional PCR.We screened 83 clinical samples from yellow-feather broiler breeder chickens and hospitalized/treated dogs and cats using CPA,PCR and traditional culture methods.The positive sample ratios were 15.3%(13/83)by CPA,13.3%(11/83)by PCR and 12.1%(10/83)by the culture method.The established CPA method has significant advantages for detecting P.aeruginosa.The method is easy to use and possesses high specificity and sensitivity without the requirements of complicated experimental equipment.The PA-CPA assay is especially fit for outdoor and primary medical units and is an ideal system for the rapid detection and monitoring of P.aeruginosa.展开更多
A simple and rapid assay for the detection of Classical swine fever virus(CSFV)was established using reverse transcription loop-mediated isothermal amplification(RT-LAMP).This study describes the amplification of the ...A simple and rapid assay for the detection of Classical swine fever virus(CSFV)was established using reverse transcription loop-mediated isothermal amplification(RT-LAMP).This study describes the amplification of the genomic RNA of CSFV under isothermal conditions(63℃)within one hour,using a set of six primers(two outer primers,two inner primers and two loop primers).This RT-LAMP assay showed 100-fold higher sensitivity than the standard RT-PCR method and identified eighteen additional positive cases that were negative when tested by RT-PCR.This RT-LAMP was able to detect all the 13 strains of CSFV but not the BVDV.PRRSV.SIV. PRV-PCV,thus showed a good specificity.Products amplified by RT-LAMP can be visualized by agarose gel electrophoresis and in addition,either as a white precipitate at the bottom of the tube after a pulse spin or as a color change when dyed with SYBR Green I which are visible to the naked eye.Because RT-LAMP is low-cost and produces rapid results,it has the potential to be an excellent tool for CSFV surveillance in the field,especially in developing countries.展开更多
基金Supported by the Natural Science Foundation of Heilongjiang Province(Topic C2017032)Heilongjiang Province Applied Technology Research and Development Program(Topic GA19B104)the National Key Research and Development Program(Topic 2018YFD0300105)。
文摘Rice bacterial leaf brown spot disease caused by Pseudomonas syringae pv.syringae(Pss)is a major disease on rice.In recent years,Pss has emerged worldwide,seriously affecting rice production.It is very important to establish a rapid detection method of Pss for the diagnosis and prevention of this disease.In order to robust and accurately diagnose the rice bacterial leaf brown spot disease in the field and laboratory,an assay system for the Pss was developed in this study,and the specific sequence of hrcN was used as the target,based on loop-mediated isothermal amplification(LAMP).The best detection system was MgSO 48 mmol·L^(-1),Bst DNA polymerase 8 U,dNTP 1.4 mmol·L^(-1),the ratio of internal and outer primers was 2:1,the reaction temperature was 63℃,the reaction time was 45 min,and the lowest sensitivity was 104 CFU·mL^(-1).This results provided an accurate and robust method for laboratory and field diagnosis of bacterial leaf brown spot disease of rice.
基金supported by Independent Innovation Specific Projects of Shandong Province (2008ZHZX1A1103)
文摘[ Objective] To develop a rapid and visualized detection method of classical swine fever virus (CSFV) using reverse transcriptase loopmediated isothermal amplification (RT-LAMP). [ Method ] A total of six special primers were designed based on the conserved sequences of CSFV gene. After optimizing, the reaction of RT-LAMP was carded out at 63℃ for 45 rain. The RT-LAMP products were analyzed by agarose gel electro- phoresis. The sensitivity, specificity and repeatability were verified, respectively. [ Result] The RT-LAMP method could be used for detecting CSFV rather than six generic viruses. The sensitivity of RT-LAMP was 100 times higher than that of RT-PCR. The detection of 27 clinical samples by RT- LAMP and RT-PCR showed that RT-LAMP is more reliable and convenient. [ Conclusion] The RT-LAMP method is sensitive and reliable for the detection of CSFV.
基金Supported by the Guangdong Key S&T Program(2019B020217002)from the Department of Science and Technology of Guangdong Province,China,the Guangdong Poultry Industry Technology System,China(2019KJ128)the earmarked fund for China Agriculture Research System(CARS-41-G16).
文摘Pseudomonas aeruginosa(PA)is an opportunistic pathogen of humans and animals and a common source of nosocomial infections especially of the respiratory tract.Pseudomonas aeruginosa is also a major bacterial disease of poultry and in particular,eggs and newly hatched chicks.In this study,we developed a simple,accurate and rapid molecular detection method using cross priming amplification(CPA)with a nucleic acid test strip to detect P.aeruginosa.The assay efficiently amplified the target gene within 45 min at 62℃only using a simple water bath.The detection limit of the method was 1.18x 102 copiesμL^-1 for plasmid DNA and 4.4 CFU mL^-1 for bacteria in pure culture,and was 100 times more sensitive than conventional PCR.We screened 83 clinical samples from yellow-feather broiler breeder chickens and hospitalized/treated dogs and cats using CPA,PCR and traditional culture methods.The positive sample ratios were 15.3%(13/83)by CPA,13.3%(11/83)by PCR and 12.1%(10/83)by the culture method.The established CPA method has significant advantages for detecting P.aeruginosa.The method is easy to use and possesses high specificity and sensitivity without the requirements of complicated experimental equipment.The PA-CPA assay is especially fit for outdoor and primary medical units and is an ideal system for the rapid detection and monitoring of P.aeruginosa.
基金The National Science and Technology supporting plan of the Eleventh Five-year(2006BAD06A18 and 2006BAD06A03)Beijing Natural Science Foundation(5072041)
文摘A simple and rapid assay for the detection of Classical swine fever virus(CSFV)was established using reverse transcription loop-mediated isothermal amplification(RT-LAMP).This study describes the amplification of the genomic RNA of CSFV under isothermal conditions(63℃)within one hour,using a set of six primers(two outer primers,two inner primers and two loop primers).This RT-LAMP assay showed 100-fold higher sensitivity than the standard RT-PCR method and identified eighteen additional positive cases that were negative when tested by RT-PCR.This RT-LAMP was able to detect all the 13 strains of CSFV but not the BVDV.PRRSV.SIV. PRV-PCV,thus showed a good specificity.Products amplified by RT-LAMP can be visualized by agarose gel electrophoresis and in addition,either as a white precipitate at the bottom of the tube after a pulse spin or as a color change when dyed with SYBR Green I which are visible to the naked eye.Because RT-LAMP is low-cost and produces rapid results,it has the potential to be an excellent tool for CSFV surveillance in the field,especially in developing countries.