A new polarization measurement algorithm by using the sum and difference beam differential property of mono-pulse radar is given.Based on the generation mechanism differences between the target scattering and multi-fa...A new polarization measurement algorithm by using the sum and difference beam differential property of mono-pulse radar is given.Based on the generation mechanism differences between the target scattering and multi-false-target jamming,the signal models of real targets and digital deceptive false target jamming for sum and delta channel are presented.The polarization discrimination parameters are designed,and the discrimination method and its performance are discussed.This novel method does not need the accurate estimation of the absolute value of full target polarization scattering matrix,but only requires the relative estimation of the orthogonal polarized component of the targets.Without the need to add additional polarization channels,the proposed method is more suitable for engineering realization.The simulation experiment verifies that the correctly identifying probability can be better than 90%.展开更多
One-bit quantization is a promising technique due to its performance retention and complexity reduction in a deceptive jammer against synthetic aperture radar(SAR).In this paper,the 1-bit quantization technology is ut...One-bit quantization is a promising technique due to its performance retention and complexity reduction in a deceptive jammer against synthetic aperture radar(SAR).In this paper,the 1-bit quantization technology is utilized to agilely generate split false targets in the SAR imagery once the radar signal is intercepted,which reduces the complexity of the jammer significantly with guaranteed focusing quality.A single-frequency threshold is used to decompose harmonics incurred by the 1-bit quantization,and its parameters are adjusted through different pulse repetition intervals to provide steerable modulations.In this way,the SAR signal is split into coupled false scatterers during the 1-bit interception.By further deploying amplitude,time-delay,and Doppler frequency modulations on the 1-bit intercepted signal,the split false targets are created.The proposed approach is compared with different deceptive jamming methods to show its validity in effectiveness and cost,and numerical experiments are also presented for verification.展开更多
基金supported by the National Natural Science Foundation of China (6073600660802078)the Hunan Provincial Innovation Foundation for Postgraduate (CX2009B010)
文摘A new polarization measurement algorithm by using the sum and difference beam differential property of mono-pulse radar is given.Based on the generation mechanism differences between the target scattering and multi-false-target jamming,the signal models of real targets and digital deceptive false target jamming for sum and delta channel are presented.The polarization discrimination parameters are designed,and the discrimination method and its performance are discussed.This novel method does not need the accurate estimation of the absolute value of full target polarization scattering matrix,but only requires the relative estimation of the orthogonal polarized component of the targets.Without the need to add additional polarization channels,the proposed method is more suitable for engineering realization.The simulation experiment verifies that the correctly identifying probability can be better than 90%.
基金National Natural Science Foundation of China(Grant No.61801297,62171293,U1713217,61971218,61601304,61801302,61701528)Natural Science Funding of Guangdong Province(Grant No.2017A030313336)+1 种基金Foundation of Shenzhen City(Grant No.JCYJ20170302142545828)Shenzhen University(Grant No.2019119,2016057)to provide fund for conducting experiments。
文摘One-bit quantization is a promising technique due to its performance retention and complexity reduction in a deceptive jammer against synthetic aperture radar(SAR).In this paper,the 1-bit quantization technology is utilized to agilely generate split false targets in the SAR imagery once the radar signal is intercepted,which reduces the complexity of the jammer significantly with guaranteed focusing quality.A single-frequency threshold is used to decompose harmonics incurred by the 1-bit quantization,and its parameters are adjusted through different pulse repetition intervals to provide steerable modulations.In this way,the SAR signal is split into coupled false scatterers during the 1-bit interception.By further deploying amplitude,time-delay,and Doppler frequency modulations on the 1-bit intercepted signal,the split false targets are created.The proposed approach is compared with different deceptive jamming methods to show its validity in effectiveness and cost,and numerical experiments are also presented for verification.