Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo...Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.展开更多
To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmo...Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.展开更多
We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain...We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.展开更多
A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in deta...A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.展开更多
A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-sect...A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-section Bezier curve. It is established by simulating the distribution histogram data obtained from the numerical finite element analysis values of a satellite component with sub-section Bezier curve. Being dealt with area normalization method, the simulation curve could be regarded as a kind of probability density function(PDF), its mathematical expectation and the variance could be used to evaluate the result of finite element analysis. Numerical experiments have indicated that the QDA method demonstrates the intrinsic characteristics of the finite element analysis of multi-functional structure made of honeycomb sandwich materials, as an appraisal method, it is effective and feasible.展开更多
Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion cha...Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion channels,sensors,and buffering proteins.Calcium can act directly by binding to signaling molecules or calcium’s effects can be indirect,for example by altering nuclear histones.展开更多
In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining proc...In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining processes on one machine, have been developed and widely used in manufacturing industries. In this study, a multi-functional turning lathe, which has two spindles and two turrets so that multiple turning operations and various machining processes could be performed simultaneously, has been developed. Furthermore, the equations of correlation between whole responses and cross responses of the two spindles have been derived to examine to what extent the two spindles affect each other’s vibrations.展开更多
The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agr...The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agriculture in mountain and marginal areas. The target was the recovering of an abandoned agricultural site, throughout its re-organisation, re-qualification and auto-sustainability, involving local citizens. This approach was based on three further broad functions such as environmental, economic and social purposes. This cooperation, that allows the capitalization of local knowledge and the forging of relationships between local and external sources of expertise, information and advice, is fundamental to the future of existing rural communities, in particular in mountain areas. The model proposed, with the elaboration of a management software and technical agronomic sheets, could be an incentive for the activities already present in that region and to stimulate new ones. The enhancing of the native ecological system, the biodiversity tutelage and the valorization of the knowledge of the territory is the basic requirement for the successful of any land management.展开更多
This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collect...This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collects these three independent surgical tools in a single laparoscopic appendectomy device.These days there is a trend of moving to multi-functional surgery devices during minimally invasive surgery.The main reasons behind the minimal invasive surgery are to avoid changing the devices several times during the operation,to reduce the time spent in operation,to increase the efficiency of the operation,to facilitate the follow-up of the camera and devices,and to leave trocars to be used for other surgical instruments.The multi-functional appendectomy device that,we present here,provides these benefits.The standard trocar entries are appropriate for its usage.The presented multifunctional laparoscopic appendectomy device offers more practical use in comparison to individual devices.On the other hand,development of these multi-functional surgery devices can be directly enhanced to the robotic surgery devices.展开更多
The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can ...The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also展开更多
Using bone tissue engineering strategies to achieve bone defect repair is a promising modality.However,the repair process outcomes are often unsatisfactory.Here we properly designed a multi-functional microsphere syst...Using bone tissue engineering strategies to achieve bone defect repair is a promising modality.However,the repair process outcomes are often unsatisfactory.Here we properly designed a multi-functional microsphere system,which could deliver bioactive proteins under the dual response of ultrasound and microenvironment,release microenvironment-responsive products on demand,reverse bone injury microenvironment,regulate the immune microenvironment,and achieve excellent bone defect treatment outcomes.In particular,the MnO_(2) introduced into the poly(lactic-co-glycolic acid)(PLGA)microspheres during synthesis could consume the acid produced by the degradation of PLGA to protect bone morphogenetic protein-2(BMP-2).More importantly,MnO_(2) could consume reactive oxygen species(ROS)and produce Mn^(2+)and oxygen(O_(2)),further promoting the repair of bone defects while reversing the microenvironment.Moreover,the reversal of the bone injury microenvironment and the depletion of ROS promoted the polarization of M1 macrophages to M2 macrophages,and the immune microenvironment was regulated.Notably,the ultrasound(US)irradiation used during treatment also allowed the on-demand release of microenvironment-responsive products.The multi-functional microsphere system combines the effects of on-demand delivery,reversal of bone injury microenvironment,and regulation of the immune microenvironment,providing new horizons for the clinical application of protein delivery and bone defect repair.展开更多
A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substra...A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substrate.The unit cell can control electromagnetic wavefronts to achieve a broadband transmission with amplitudes greater than 0.4 from 4.4 to 10.4 GHz.Meanwhile,at 11.7 GHz and 15.4 GHz,four high-efficiency reflection channels with a reflection amplitude greater than 0.8 are also realized.When illuminated by linearly polarized waves,five different functions can be realized at five different frequencies,which are demonstrated by theoretical calculations,full-wave simulations,and experimental measurements.展开更多
With the efficient cross-linking abilities and the flexible regulation abilities to the performances of cross-linked products,the multi-functional aliphatic epoxides were once widely used to cross-link the collagen-ba...With the efficient cross-linking abilities and the flexible regulation abilities to the performances of cross-linked products,the multi-functional aliphatic epoxides were once widely used to cross-link the collagen-based materials in the last century.In present work,the multi-functional epoxides were used to construct and cross-link collagen sponges for tissue engineering scaffolds,which was hoped to board the theoretical system of epoxides and explore their potentials for modern applications.The bi-to tetra-functional epoxides were used to cross-link collagen solutions and establish the gel-like precursors,then using freeze-drying to form the final sponges.The SEM observed that the sponges had shown regular porous structures with a wide range of pore sizes from 160 to 440μm.The sponges had presented the resistance to enzymatic degradation,shape-remaining ability,and reversible compressibility in aqueous environments,which all could be regulated through the functionalities of epoxides.The regulation abilities of multi-functional epoxides on the performances of sponges had been mainly achieved through the cross-linking degrees that the higherfunctionality of epoxides would bring higher cross-linking degree.Such higher cross-linking degrees could enhance the elastic behaviors of gel-like precursors,and improve the compressive strengths and thermal stabilities of sponges.Nevertheless,the multi-functional epoxides had barely affected the safety of collagen sponges at the cellular level according to the results of CCK8 assay and the SEM and CLSM images of L929 fibroblasts cultured on the cross-sections of sponges.展开更多
Metal-organic frameworks(MOFs) are a unique class of porous crystalline materials that have shown promise for a wide range of applications. MOFs have been explored as a new type of heterogeneous catalytic materials,...Metal-organic frameworks(MOFs) are a unique class of porous crystalline materials that have shown promise for a wide range of applications. MOFs have been explored as a new type of heterogeneous catalytic materials, because of their high surface area, uniform and tunable pores, facile functionalization and incorporation of catalytic active sites. The use of multi-functional sites MOF materials as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention. In this review, we aim to introduce the construction of bi-or multi-functional MOF catalysts with cooperative or cascade functions via post-synthetic modification(PSM).展开更多
Nerve guidance conduits(NGCs)have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair.Great efforts in recent years have been devoted to the developm...Nerve guidance conduits(NGCs)have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair.Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies.The present review provides a comprehensive overview of progress in the material innovation,structural design,advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs.Abundant advanced engineering technologies including extrusion-based system,laser-based system,and novel textile forming techniques in terms of weaving,knitting,braiding,and electrospinning techniques were also analyzed in detail.Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages,acquiring better biomechanical properties,chemical stability and biocompatibility.Finally,the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.展开更多
Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real a...Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real applications,severe environments occur frequently,such as extremely cold weather.General hydrogels always lack anti-freeze and anti-dehydration abilities.Consequently,the functions of electronic devices based on traditional hydrogels will quickly fail in extreme environments.Therefore,the development of environmentally robust hydrogels that can withstand extremely low temperatures,overcome dehydration,and ensure the stable operation of electronic devices has become increasingly important.Here,we report a kind of graphene oxide(GO)incorporated polyvinyl alcohol-polyacrylamide(PVA-PAAm)double network hydrogel(GPPDhydrogel)which shows excellent anti-freeze ability.The GPPD-hydrogel exhibits not only good flexibility and ultra-high stretchability up to 2,000%,but ensures a high sensitivity when used as the strain sensor at−50°C.More importantly,when serving as the electrode of a sandwich-structural triboelectric nanogenerator(TENG),the GPPD-hydrogel endows the TENG high and stable output performances even under−80°C.Besides,the GPPD-hydrogel is demonstrated long-lasting moisture retention over 100 days.The GPPD-hydrogel provides a reliable and promising candidate for the new generation of wearable electronics.展开更多
Rational design of a robust carbon matrix has a profound impact on the performance of flexible/wearable lithium/sulfur batteries.Herein,we demonstrate a freestanding three-dimensional super-aligned carbon nanotube (SA...Rational design of a robust carbon matrix has a profound impact on the performance of flexible/wearable lithium/sulfur batteries.Herein,we demonstrate a freestanding three-dimensional super-aligned carbon nanotube (SACNT) matrix reinforced with a multi-functionalized carbon coating for flexible,high-areal sulfur loading cathode.By employing the sulfur/nitrogen co-doped carbon (SNC)"glue",the joints in the SACNT scaffold are tightly welded together so that the overall mechanical strength of the electrode is significantly enhanced to withstand the repeated bending as well as the volume change during operation.The SNC also shows intriguing catalytic effect that lowers the energy barrier of Li ion transport,propelling a superior redox conversion efficiency.The resulting binder-free and current collector-free sulfur cathode exhibits a high reversible capacity of 1,079 mAh·g^-1 at 1 C,a high-rate capacity of ~ 800 mAh·g^-1 at 5 C,and an average capacity decay rate of 0.037% per cycle at 2 C for 1,500 cycles.Impressively,a large-areal flexible Li/S pouch cell based on such mechanically robust cathode exhibits excellent capacity retention under arbitrary bending conditions.With a high areal sulfur loading of 7 mg·cm^-2,the large-areal flexible cathode delivers an outstanding areal capacity of 6.3 mAh·cm^-2 at 0.5 C (5.86 mA·cm^-2),showing its promise for realizing practical high energy density flexible Li/S batteries.展开更多
Recent developments in scanning holographic microscopy that offer the prospects of new quantitative tools and imaging modalities in bio, micro, and nano sciences are reviewed. The versatility of the method is emphasiz...Recent developments in scanning holographic microscopy that offer the prospects of new quantitative tools and imaging modalities in bio, micro, and nano sciences are reviewed. The versatility of the method is emphasized. Scanning holography can operate in an incoherent mode for fluorescence imaging, in a coherent mode for quantitative phase imaging, or in a tomographic mode for axial sectioning and rejection of the out-of-focus haze. Possible applications are illustrated with examples, and future prospects are discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.NSFC 12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology,China(Grant No.YK22-02-08)+3 种基金the Qing Lan Project of Jiangsu Province,Chinathe Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX23_0964)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China(Grant No.ZK21-05-09)。
文摘Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.
基金supported by grants from CAMS Innovation Fund for Medical Sciences(Grant No.:2021-I2M-1-026)Scientific Research Project of Tianjin Education Commission(Grant No.:2020KJ140)Tianjin Health Research Project(Grant No.:KJ20017)。
文摘Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504)the National Natural Science Foundation of China(Grant Nos.61875069 and 61575076)+1 种基金Hong Kong Scholars Program,China(Grant No.XJ2016026)the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20190302010GX and 20160520091JH)
文摘We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.
基金This project was supported by China Postdoctoral Science Funds, Jiangsu Planned Projects for Postdoctoral Research Funds and Northeast Forestry University Research Funds.
文摘A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.
基金Funded by the National Natural Science Foundation of China(No.61471024)National Marine Technology Program for Public Welfare,China(No.201505002-1)
文摘A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-section Bezier curve. It is established by simulating the distribution histogram data obtained from the numerical finite element analysis values of a satellite component with sub-section Bezier curve. Being dealt with area normalization method, the simulation curve could be regarded as a kind of probability density function(PDF), its mathematical expectation and the variance could be used to evaluate the result of finite element analysis. Numerical experiments have indicated that the QDA method demonstrates the intrinsic characteristics of the finite element analysis of multi-functional structure made of honeycomb sandwich materials, as an appraisal method, it is effective and feasible.
文摘Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion channels,sensors,and buffering proteins.Calcium can act directly by binding to signaling molecules or calcium’s effects can be indirect,for example by altering nuclear histones.
文摘In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining processes on one machine, have been developed and widely used in manufacturing industries. In this study, a multi-functional turning lathe, which has two spindles and two turrets so that multiple turning operations and various machining processes could be performed simultaneously, has been developed. Furthermore, the equations of correlation between whole responses and cross responses of the two spindles have been derived to examine to what extent the two spindles affect each other’s vibrations.
文摘The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agriculture in mountain and marginal areas. The target was the recovering of an abandoned agricultural site, throughout its re-organisation, re-qualification and auto-sustainability, involving local citizens. This approach was based on three further broad functions such as environmental, economic and social purposes. This cooperation, that allows the capitalization of local knowledge and the forging of relationships between local and external sources of expertise, information and advice, is fundamental to the future of existing rural communities, in particular in mountain areas. The model proposed, with the elaboration of a management software and technical agronomic sheets, could be an incentive for the activities already present in that region and to stimulate new ones. The enhancing of the native ecological system, the biodiversity tutelage and the valorization of the knowledge of the territory is the basic requirement for the successful of any land management.
文摘This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collects these three independent surgical tools in a single laparoscopic appendectomy device.These days there is a trend of moving to multi-functional surgery devices during minimally invasive surgery.The main reasons behind the minimal invasive surgery are to avoid changing the devices several times during the operation,to reduce the time spent in operation,to increase the efficiency of the operation,to facilitate the follow-up of the camera and devices,and to leave trocars to be used for other surgical instruments.The multi-functional appendectomy device that,we present here,provides these benefits.The standard trocar entries are appropriate for its usage.The presented multifunctional laparoscopic appendectomy device offers more practical use in comparison to individual devices.On the other hand,development of these multi-functional surgery devices can be directly enhanced to the robotic surgery devices.
文摘The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also
基金National Natural Science Foundation of China(82272468,52173146)the Special Fund for Industrialization of Science and Technology Cooperation between Jilin Province and Chinese Academy of Sciences(2022SYHZ0022)the Jilin Provincial science and technology development program(No.20230401089YY)。
文摘Using bone tissue engineering strategies to achieve bone defect repair is a promising modality.However,the repair process outcomes are often unsatisfactory.Here we properly designed a multi-functional microsphere system,which could deliver bioactive proteins under the dual response of ultrasound and microenvironment,release microenvironment-responsive products on demand,reverse bone injury microenvironment,regulate the immune microenvironment,and achieve excellent bone defect treatment outcomes.In particular,the MnO_(2) introduced into the poly(lactic-co-glycolic acid)(PLGA)microspheres during synthesis could consume the acid produced by the degradation of PLGA to protect bone morphogenetic protein-2(BMP-2).More importantly,MnO_(2) could consume reactive oxygen species(ROS)and produce Mn^(2+)and oxygen(O_(2)),further promoting the repair of bone defects while reversing the microenvironment.Moreover,the reversal of the bone injury microenvironment and the depletion of ROS promoted the polarization of M1 macrophages to M2 macrophages,and the immune microenvironment was regulated.Notably,the ultrasound(US)irradiation used during treatment also allowed the on-demand release of microenvironment-responsive products.The multi-functional microsphere system combines the effects of on-demand delivery,reversal of bone injury microenvironment,and regulation of the immune microenvironment,providing new horizons for the clinical application of protein delivery and bone defect repair.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(No.LH2022F053)the National Natural Science Foundation of China(Nos.62275063 and 62171153)+3 种基金the Scientific and Technological Development Project of the Central Government Guiding Local(No.SBZY2021E076)the Open Project of State Key Laboratory of Millimeter Waves(No.K202309)the Postdoctoral Research Fund Project of Heilongjiang Province of China(No.LBH-Q21195)the Fundamental Research Funds of Heilongjiang Provincial Universities of China(No.145209151).
文摘A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substrate.The unit cell can control electromagnetic wavefronts to achieve a broadband transmission with amplitudes greater than 0.4 from 4.4 to 10.4 GHz.Meanwhile,at 11.7 GHz and 15.4 GHz,four high-efficiency reflection channels with a reflection amplitude greater than 0.8 are also realized.When illuminated by linearly polarized waves,five different functions can be realized at five different frequencies,which are demonstrated by theoretical calculations,full-wave simulations,and experimental measurements.
基金supported by the National Natural Science Foundation of China(No.22078206).
文摘With the efficient cross-linking abilities and the flexible regulation abilities to the performances of cross-linked products,the multi-functional aliphatic epoxides were once widely used to cross-link the collagen-based materials in the last century.In present work,the multi-functional epoxides were used to construct and cross-link collagen sponges for tissue engineering scaffolds,which was hoped to board the theoretical system of epoxides and explore their potentials for modern applications.The bi-to tetra-functional epoxides were used to cross-link collagen solutions and establish the gel-like precursors,then using freeze-drying to form the final sponges.The SEM observed that the sponges had shown regular porous structures with a wide range of pore sizes from 160 to 440μm.The sponges had presented the resistance to enzymatic degradation,shape-remaining ability,and reversible compressibility in aqueous environments,which all could be regulated through the functionalities of epoxides.The regulation abilities of multi-functional epoxides on the performances of sponges had been mainly achieved through the cross-linking degrees that the higherfunctionality of epoxides would bring higher cross-linking degree.Such higher cross-linking degrees could enhance the elastic behaviors of gel-like precursors,and improve the compressive strengths and thermal stabilities of sponges.Nevertheless,the multi-functional epoxides had barely affected the safety of collagen sponges at the cellular level according to the results of CCK8 assay and the SEM and CLSM images of L929 fibroblasts cultured on the cross-sections of sponges.
基金supported by the National Natural Science Foundation of China (Nos. 21371069 and 21621001)
文摘Metal-organic frameworks(MOFs) are a unique class of porous crystalline materials that have shown promise for a wide range of applications. MOFs have been explored as a new type of heterogeneous catalytic materials, because of their high surface area, uniform and tunable pores, facile functionalization and incorporation of catalytic active sites. The use of multi-functional sites MOF materials as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention. In this review, we aim to introduce the construction of bi-or multi-functional MOF catalysts with cooperative or cascade functions via post-synthetic modification(PSM).
基金financially supported by National Key R&D Program of China(2021YFE0111100 and 2019YFE0117700)the“Top six talent peaks”program of Jiangsu(GDZB-035)and Science and Technology Project of Nantong(JC2020082)+2 种基金the support of China National Textile and Apparel Council(J202002)joint scientific research project of Sino-foreign cooperative education platform of Jiangsu Higher Education Institutions(5011500720)projects with numbers FZ20190257,XJFZ/2021/7 and 2021fx010104.
文摘Nerve guidance conduits(NGCs)have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair.Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies.The present review provides a comprehensive overview of progress in the material innovation,structural design,advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs.Abundant advanced engineering technologies including extrusion-based system,laser-based system,and novel textile forming techniques in terms of weaving,knitting,braiding,and electrospinning techniques were also analyzed in detail.Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages,acquiring better biomechanical properties,chemical stability and biocompatibility.Finally,the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.
基金support from the National Natural Science Foundation of China(Nos.22001018,52192610,52173298,and 61904012)the National Key R&D Program of China(No.2021YFA1201603).
文摘Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real applications,severe environments occur frequently,such as extremely cold weather.General hydrogels always lack anti-freeze and anti-dehydration abilities.Consequently,the functions of electronic devices based on traditional hydrogels will quickly fail in extreme environments.Therefore,the development of environmentally robust hydrogels that can withstand extremely low temperatures,overcome dehydration,and ensure the stable operation of electronic devices has become increasingly important.Here,we report a kind of graphene oxide(GO)incorporated polyvinyl alcohol-polyacrylamide(PVA-PAAm)double network hydrogel(GPPDhydrogel)which shows excellent anti-freeze ability.The GPPD-hydrogel exhibits not only good flexibility and ultra-high stretchability up to 2,000%,but ensures a high sensitivity when used as the strain sensor at−50°C.More importantly,when serving as the electrode of a sandwich-structural triboelectric nanogenerator(TENG),the GPPD-hydrogel endows the TENG high and stable output performances even under−80°C.Besides,the GPPD-hydrogel is demonstrated long-lasting moisture retention over 100 days.The GPPD-hydrogel provides a reliable and promising candidate for the new generation of wearable electronics.
基金the National Key R&D Program of China (No.2016YFB0100100)the National Natural Science Foundation of China (Nos.21433013 and U1832218)+1 种基金CAS-Queensland Collaborative Science Fund (No.121E32KYSB20160032)the CAS-DOE Joint Research Program (No. 121E32KYSB20150004).
文摘Rational design of a robust carbon matrix has a profound impact on the performance of flexible/wearable lithium/sulfur batteries.Herein,we demonstrate a freestanding three-dimensional super-aligned carbon nanotube (SACNT) matrix reinforced with a multi-functionalized carbon coating for flexible,high-areal sulfur loading cathode.By employing the sulfur/nitrogen co-doped carbon (SNC)"glue",the joints in the SACNT scaffold are tightly welded together so that the overall mechanical strength of the electrode is significantly enhanced to withstand the repeated bending as well as the volume change during operation.The SNC also shows intriguing catalytic effect that lowers the energy barrier of Li ion transport,propelling a superior redox conversion efficiency.The resulting binder-free and current collector-free sulfur cathode exhibits a high reversible capacity of 1,079 mAh·g^-1 at 1 C,a high-rate capacity of ~ 800 mAh·g^-1 at 5 C,and an average capacity decay rate of 0.037% per cycle at 2 C for 1,500 cycles.Impressively,a large-areal flexible Li/S pouch cell based on such mechanically robust cathode exhibits excellent capacity retention under arbitrary bending conditions.With a high areal sulfur loading of 7 mg·cm^-2,the large-areal flexible cathode delivers an outstanding areal capacity of 6.3 mAh·cm^-2 at 0.5 C (5.86 mA·cm^-2),showing its promise for realizing practical high energy density flexible Li/S batteries.
文摘Recent developments in scanning holographic microscopy that offer the prospects of new quantitative tools and imaging modalities in bio, micro, and nano sciences are reviewed. The versatility of the method is emphasized. Scanning holography can operate in an incoherent mode for fluorescence imaging, in a coherent mode for quantitative phase imaging, or in a tomographic mode for axial sectioning and rejection of the out-of-focus haze. Possible applications are illustrated with examples, and future prospects are discussed.