期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多头软注意力图卷积网络的行人轨迹预测
1
作者
彭涛
康亚龙
+5 位作者
余锋
张自力
刘军平
胡新荣
何儒汉
李丽
《计算机应用》
CSCD
北大核心
2023年第3期736-743,共8页
行人间交互作用的复杂性给行人轨迹预测带来了挑战,且现有算法难以捕获行人间有意义的交互信息,不能直观地建模行人间的交互作用。针对以上问题,提出多头软注意力图卷积网络。首先利用多头软注意力(MS ATT)结合内卷网络Involution分别...
行人间交互作用的复杂性给行人轨迹预测带来了挑战,且现有算法难以捕获行人间有意义的交互信息,不能直观地建模行人间的交互作用。针对以上问题,提出多头软注意力图卷积网络。首先利用多头软注意力(MS ATT)结合内卷网络Involution分别从空间图和时间图输入中提取稀疏空间和稀疏时间邻接矩阵,生成稀疏空间和稀疏时间有向图;然后,利用图卷积网络(GCN)从稀疏空间和稀疏时间有向图中学习交互作用与运动趋势特征;最后,将学习到的轨迹特征输入时间卷积网络(TCN)以预测双高斯分布参数,生成行人预测轨迹。在ETH和UCY数据集上的实验结果表明:相较于空时社交关系池化行人轨迹预测模型(SOPM),所提算法的平均位移误差(ADE)降低了2.78%;相较于稀疏图卷积网络(SGCN),所提算法的最终位移误差(FDE)降低了16.92%。
展开更多
关键词
多头软注意力
通道注意力
空间注意力
内卷
图卷积网络
行人轨迹预测
下载PDF
职称材料
题名
基于多头软注意力图卷积网络的行人轨迹预测
1
作者
彭涛
康亚龙
余锋
张自力
刘军平
胡新荣
何儒汉
李丽
机构
纺织服装智能化湖北省工程研究中心(武汉纺织大学)
湖北省服装信息化工程技术研究中心(武汉纺织大学)
武汉纺织大学计算机与人工智能学院
出处
《计算机应用》
CSCD
北大核心
2023年第3期736-743,共8页
基金
国家自然科学基金资助项目(61901308)
湖北省教育厅青年项目(Q201316)
湖北省教育厅科研计划重点项目(D20191708)。
文摘
行人间交互作用的复杂性给行人轨迹预测带来了挑战,且现有算法难以捕获行人间有意义的交互信息,不能直观地建模行人间的交互作用。针对以上问题,提出多头软注意力图卷积网络。首先利用多头软注意力(MS ATT)结合内卷网络Involution分别从空间图和时间图输入中提取稀疏空间和稀疏时间邻接矩阵,生成稀疏空间和稀疏时间有向图;然后,利用图卷积网络(GCN)从稀疏空间和稀疏时间有向图中学习交互作用与运动趋势特征;最后,将学习到的轨迹特征输入时间卷积网络(TCN)以预测双高斯分布参数,生成行人预测轨迹。在ETH和UCY数据集上的实验结果表明:相较于空时社交关系池化行人轨迹预测模型(SOPM),所提算法的平均位移误差(ADE)降低了2.78%;相较于稀疏图卷积网络(SGCN),所提算法的最终位移误差(FDE)降低了16.92%。
关键词
多头软注意力
通道注意力
空间注意力
内卷
图卷积网络
行人轨迹预测
Keywords
multi-head
soft
attention
(MS
att
)
channel
attention
spatial
attention
involution network
Graph Convolutional Network(GCN)
pedestrian trajectory prediction
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多头软注意力图卷积网络的行人轨迹预测
彭涛
康亚龙
余锋
张自力
刘军平
胡新荣
何儒汉
李丽
《计算机应用》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部