Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack...Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack transparency of model prediction principles. In this paper,a new graph convolutional network path semantic-aware graph convolution network(PSGCN) is proposed to achieve modeling the semantic information of multi-hop paths. PSGCN first uses a random walk strategy to obtain all-hop paths in KGs,then captures the semantics of the paths by Word2Sec and long shortterm memory(LSTM) models,and finally converts them into a potential representation for the graph convolution network(GCN) messaging process. PSGCN combines path-based inference methods and graph neural networks to achieve better interpretability and scalability. In addition,to ensure the robustness of the model,the value of the path thresholdKis experimented on the FB15K-237 and WN18RR datasets,and the final results prove the effectiveness of the model.展开更多
To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform ph...To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform physical carrier sensing,and the carrier sensing range can be set to different values.In the traditional carrier sensing mechanism,the carrier sensing range is computed under the protocol interference model,which is not accurate.Here the optimal carrier sensing range with physical interference model is achieved.Each sending node implements the distributed approach in three phases at each time slot,and all the concurrent transmissions are interference free.Good performance can be achieved under this scheduling approach.The approximation ratio of the distributed method to the optimal one is also proved.展开更多
Link scheduling has always been a fundamental problem in wireless networks for its direct impacts on the performance of wireless networks such as throughput capacity,transmission delay,lifetime,etc.Existing work is ma...Link scheduling has always been a fundamental problem in wireless networks for its direct impacts on the performance of wireless networks such as throughput capacity,transmission delay,lifetime,etc.Existing work is mainly established under graphbased models,which are not only impractical but also incorrect due to the essentially fading characteristics of signals.In this paper,we study the shortest link scheduling problem under two more realistic models,namely the signal to interference plus noise ratio(SINR)model and the Rayleigh fading model.We propose a centralized square-based scheduling algorithm(CSSA)with oblivious power control under the SINR model and prove its correctness under both the SINR model and the Rayleigh fading model.Furthermore,we extend CSSA and propose a distributed square-based scheduling algorithm(DSSA).Note that DSSA adopts CSMA/CA so that a wireless node can compete for the wireless channel before starting its communication.We also show theoretical analysis and conduct extensive simulations to exhibit the correctness and efficiency of our algorithms.展开更多
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper...In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.展开更多
Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless...Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless networks, a practical network coding aware routing protocol is proposed in this paper, for unicast sessions in multi- hop wireless networks. The protocol is based on a novel routing metric design that captures the characteristics of network coding and unicast sessions. To ensure the novel routing mettle can operate with practical and widely available path calculation algorithms, a unique mapping process is used to map a real wireless network to a virtual network. The mapping process ensures that the paths with the biggest coding opportunities will be selected by commonly used path calculation algorithms. Simulation results show that the proposed routing protocol is effective to improve the network throughput.展开更多
Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in commu...Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in communication hot spots. Whereas in some neighboring under-loaded cells, bandwidth may be superfluous because there are only few users to request services. In order to raise resource utilization of the whole heterogeneous networks, several novel load balancing strategies are proposed, which combine the call ad- mission control policy and multi-hop routing protocol of ad-hoc network for load balancing. These loadbalancing strategies firstly make a decision whether to admit a new call or not by considering some parameters like load index and route cost, etc., and then transfer the denied users into neighboring under-loaded cell with surplus channel according to optimum multi-hop routing algorithm. Simulation results show that the proposed load balancing strategies can distribute traffics to the whole heterogeneous wireless netorks, improve the load balance index efficiently, and avoid the call block phenomenon almost absolutely.展开更多
We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS i...We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS is equipped with four (4) cellular modems for weather data delivery. The effectiveness of up-links is challenging because of overlapping spatial-temporal factors such as the presence of good reflectors that lead to multi-path effects, interference, network load or other reasons. We argue that, there is a strong need for independent assessments of their robustness, to perform end-to-end network measurement. However, it is yet difficult to go from a particular measurement to an assessment of the entire network. We extensively measure the variability of Radio Signal Strength (RSSI) as link metric on the cellular modems. The RSSI is one of the important link metrics that can determine the robustness of received RF signals, and explore how they differed from one another at a particular location and instant time. We also apply the statistical analysis that quantifies the level of stability by considering the robustness, referring short-term variation, and determines good up-link in comparison to weak one. The results show that the robustness of cellular up-links exists for an unpredictable period of time and lower than one could hope. More than 50% of up-links are intermittent. Therefore, we plan to extend our work by exploring RSSI thresholds, to develop a classification scheme supporting a decision whether a link is either intermittent or not. This will help in normalizing the level of stability, to design the RSSI estimation metric for the robust routing protocol in weather data networks.展开更多
This paper presents a 220-GHz-band 7-m wireless link with a 45-Gbps transmission data rate by using 16 quadrature amplitude modulation(16-QAM).Super-heterodyne transceiver modules are developed for transmission and re...This paper presents a 220-GHz-band 7-m wireless link with a 45-Gbps transmission data rate by using 16 quadrature amplitude modulation(16-QAM).Super-heterodyne transceiver modules are developed for transmission and reception of the modulated signals,which consist of a Schottky barrier diodes(SBD)based sub-harmonic mixer(SHM),an InP HEMT low noise amplifier(LNA),a waveguide band-pass filter(BPF),and a 108-GHz local oscillator(LO)multiplier chain.The transmitter features a peak transmit power of 1.41 dBm,and the IF frequency varies from 5 GHz to 20 GHz.Besides,the receiver features a conversion gain of 9.3 dB in average and a noise temperature of 3052.8 K.The measured results indicate that the transceiver modules enable data transmission of a 45-Gbps 16-QAM signal with Signal-Noise-Ratio(SNR)from 11.59 dB to 15.36 dB in a 7-m line-of-sight channel.展开更多
Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions su...Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions such as cost, invisible deployment and many application domains, lead to small size and resource limited sensors [3]. WSNs are susceptible to many types of link layer attacks [1] and most of traditional network security techniques are unusable on WSNs [3];This is due to wireless and shared nature of communication channel, untrusted transmissions, deployment in open environments, unattended nature and limited resources [1]. Therefore security is a vital requirement for these networks;but we have to design a proper security mechanism that attends to WSN’s constraints and requirements. In this paper, we focus on security of WSNs, divide it (the WSNs security) into four categories and will consider them, include: an overview of WSNs, security in WSNs, the threat model on WSNs, a wide variety of WSNs’ link layer attacks and a comparison of them. This work enables us to identify the purpose and capabilities of the attackers;furthermore, the goal and effects of the link layer attacks on WSNs are introduced. Also, this paper discusses known approaches of security detection and defensive mechanisms against the link layer attacks;this would enable IT security managers to manage the link layer attacks of WSNs more effectively.展开更多
A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome t...A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.展开更多
In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the c...In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.展开更多
In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks o...In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.展开更多
The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespa...The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespan can be extended if the quantity of control messages is decreased.In this study,an optimized storage technique having low control overhead for tracking the objects in WSN is introduced.The basic concept is to retain observed events in internal memory and preserve the relationship between sensed information and sensor nodes using a novel inexpensive data structure entitled Ordered Binary Linked List(OBLL).Whenever an object passes over the sensor area,the recognizing sensor can immediately produce an OBLL along the object’s route.To retrieve the entire information,the OBLL can be traversed with logarithmic complexity which is much less than the traversing complexity of existing linked list structures.Performance evaluation and simulations were carried out to ensure that the suggested technique minimizes the number of messages and thus saving energy and extending the network life.展开更多
Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network pro...Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network protocol in wireless networks.Based on the extensive review,it is noted that the substantial link percentage is symmetric,i.e.,many links are unidirectional.It is identified that the synchronous acknowledgement reliability is higher than the asynchronous message.Therefore,the process of establishing bidirectional link quality through asynchronous beacons underrates the link reliability of asym-metric links.It paves the way to exploit an investigation on asymmetric links to enhance network functions through link estimation.Here,a novel Learning-based Dynamic Tree routing(LDTR)model is proposed to improve network performance and delay.For the evaluation of delay measures,asymmetric link,interference,probability of transmission failure is evaluated.The proportion of energy consumed is used for monitoring energy conditions based on the total energy capacity.This learning model is a productive way for resolving the routing issues over the network model during uncertainty.The asymmetric path is chosen to achieve exploitation and exploration iteratively.The learning-based Dynamic Tree routing model is utilized to resolve the multi-objective routing problem.Here,the simulation is done with MATLAB 2020a simulation environment and path with energy-efficiency and lesser E2E delay is evaluated and compared with existing approaches like the Dyna-Q-network model(DQN),asymmetric MAC model(AMAC),and cooperative asymmetric MAC model(CAMAC)model.The simulation outcomes demonstrate that the anticipated LDTR model attains superior network performance compared to others.The average energy consump-tion is 250 J,packet energy consumption is 6.5 J,PRR is 50 bits/sec,95%PDR,average delay percentage is 20%.展开更多
基金Supported by the National Natural Science Foundation of China(No.61876144).
文摘Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack transparency of model prediction principles. In this paper,a new graph convolutional network path semantic-aware graph convolution network(PSGCN) is proposed to achieve modeling the semantic information of multi-hop paths. PSGCN first uses a random walk strategy to obtain all-hop paths in KGs,then captures the semantics of the paths by Word2Sec and long shortterm memory(LSTM) models,and finally converts them into a potential representation for the graph convolution network(GCN) messaging process. PSGCN combines path-based inference methods and graph neural networks to achieve better interpretability and scalability. In addition,to ensure the robustness of the model,the value of the path thresholdKis experimented on the FB15K-237 and WN18RR datasets,and the final results prove the effectiveness of the model.
基金Supported by the National Basic Research Program of China(No.2007CB307105)the National Natural Science Foundation of China(No.60932005)
文摘To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform physical carrier sensing,and the carrier sensing range can be set to different values.In the traditional carrier sensing mechanism,the carrier sensing range is computed under the protocol interference model,which is not accurate.Here the optimal carrier sensing range with physical interference model is achieved.Each sending node implements the distributed approach in three phases at each time slot,and all the concurrent transmissions are interference free.Good performance can be achieved under this scheduling approach.The approximation ratio of the distributed method to the optimal one is also proved.
基金supported by NSF of China under grants 61672321,61771289,61832012 and 61373027MBRP of Shandong Provincial Natural Science Foundation under grant ZR2019ZD10+1 种基金STPU of Shandong Province under grant J15LN05supported by NSFC under grants 90718030,and 90818002。
文摘Link scheduling has always been a fundamental problem in wireless networks for its direct impacts on the performance of wireless networks such as throughput capacity,transmission delay,lifetime,etc.Existing work is mainly established under graphbased models,which are not only impractical but also incorrect due to the essentially fading characteristics of signals.In this paper,we study the shortest link scheduling problem under two more realistic models,namely the signal to interference plus noise ratio(SINR)model and the Rayleigh fading model.We propose a centralized square-based scheduling algorithm(CSSA)with oblivious power control under the SINR model and prove its correctness under both the SINR model and the Rayleigh fading model.Furthermore,we extend CSSA and propose a distributed square-based scheduling algorithm(DSSA).Note that DSSA adopts CSMA/CA so that a wireless node can compete for the wireless channel before starting its communication.We also show theoretical analysis and conduct extensive simulations to exhibit the correctness and efficiency of our algorithms.
基金supported by the National Natural Science Foundation of China under Grants No.60972038,No.61001077,No.61101105 the Scientific Research Foundation for Nanjing University of Posts and Telecommunications under Grant No.NY211007+2 种基金 the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2011D05 Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20113223120002 University Natural Science Research Project of Jiangsu Province under Grant No.11KJB510016
文摘In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.
基金Supported by the National Natural Science Foundation of China (No. 60903156), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2010ZX03004-001-02).
文摘Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless networks, a practical network coding aware routing protocol is proposed in this paper, for unicast sessions in multi- hop wireless networks. The protocol is based on a novel routing metric design that captures the characteristics of network coding and unicast sessions. To ensure the novel routing mettle can operate with practical and widely available path calculation algorithms, a unique mapping process is used to map a real wireless network to a virtual network. The mapping process ensures that the paths with the biggest coding opportunities will be selected by commonly used path calculation algorithms. Simulation results show that the proposed routing protocol is effective to improve the network throughput.
基金Supported by the National Natural Science Foundation of China (No. 60672059, 60496315 )the National High Technology Research and Development Programme of China (No.2006AA01Z233)
文摘Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in communication hot spots. Whereas in some neighboring under-loaded cells, bandwidth may be superfluous because there are only few users to request services. In order to raise resource utilization of the whole heterogeneous networks, several novel load balancing strategies are proposed, which combine the call ad- mission control policy and multi-hop routing protocol of ad-hoc network for load balancing. These loadbalancing strategies firstly make a decision whether to admit a new call or not by considering some parameters like load index and route cost, etc., and then transfer the denied users into neighboring under-loaded cell with surplus channel according to optimum multi-hop routing algorithm. Simulation results show that the proposed load balancing strategies can distribute traffics to the whole heterogeneous wireless netorks, improve the load balance index efficiently, and avoid the call block phenomenon almost absolutely.
文摘We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS is equipped with four (4) cellular modems for weather data delivery. The effectiveness of up-links is challenging because of overlapping spatial-temporal factors such as the presence of good reflectors that lead to multi-path effects, interference, network load or other reasons. We argue that, there is a strong need for independent assessments of their robustness, to perform end-to-end network measurement. However, it is yet difficult to go from a particular measurement to an assessment of the entire network. We extensively measure the variability of Radio Signal Strength (RSSI) as link metric on the cellular modems. The RSSI is one of the important link metrics that can determine the robustness of received RF signals, and explore how they differed from one another at a particular location and instant time. We also apply the statistical analysis that quantifies the level of stability by considering the robustness, referring short-term variation, and determines good up-link in comparison to weak one. The results show that the robustness of cellular up-links exists for an unpredictable period of time and lower than one could hope. More than 50% of up-links are intermittent. Therefore, we plan to extend our work by exploring RSSI thresholds, to develop a classification scheme supporting a decision whether a link is either intermittent or not. This will help in normalizing the level of stability, to design the RSSI estimation metric for the robust routing protocol in weather data networks.
基金National Natural Science Foundation of China(No.61871072).
文摘This paper presents a 220-GHz-band 7-m wireless link with a 45-Gbps transmission data rate by using 16 quadrature amplitude modulation(16-QAM).Super-heterodyne transceiver modules are developed for transmission and reception of the modulated signals,which consist of a Schottky barrier diodes(SBD)based sub-harmonic mixer(SHM),an InP HEMT low noise amplifier(LNA),a waveguide band-pass filter(BPF),and a 108-GHz local oscillator(LO)multiplier chain.The transmitter features a peak transmit power of 1.41 dBm,and the IF frequency varies from 5 GHz to 20 GHz.Besides,the receiver features a conversion gain of 9.3 dB in average and a noise temperature of 3052.8 K.The measured results indicate that the transceiver modules enable data transmission of a 45-Gbps 16-QAM signal with Signal-Noise-Ratio(SNR)from 11.59 dB to 15.36 dB in a 7-m line-of-sight channel.
文摘Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions such as cost, invisible deployment and many application domains, lead to small size and resource limited sensors [3]. WSNs are susceptible to many types of link layer attacks [1] and most of traditional network security techniques are unusable on WSNs [3];This is due to wireless and shared nature of communication channel, untrusted transmissions, deployment in open environments, unattended nature and limited resources [1]. Therefore security is a vital requirement for these networks;but we have to design a proper security mechanism that attends to WSN’s constraints and requirements. In this paper, we focus on security of WSNs, divide it (the WSNs security) into four categories and will consider them, include: an overview of WSNs, security in WSNs, the threat model on WSNs, a wide variety of WSNs’ link layer attacks and a comparison of them. This work enables us to identify the purpose and capabilities of the attackers;furthermore, the goal and effects of the link layer attacks on WSNs are introduced. Also, this paper discusses known approaches of security detection and defensive mechanisms against the link layer attacks;this would enable IT security managers to manage the link layer attacks of WSNs more effectively.
基金Partly supported by the National Hi-Tech Research and Development Program of China (863 Program) (No.2003AA143040).
文摘A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.
文摘In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.
文摘In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.
文摘The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespan can be extended if the quantity of control messages is decreased.In this study,an optimized storage technique having low control overhead for tracking the objects in WSN is introduced.The basic concept is to retain observed events in internal memory and preserve the relationship between sensed information and sensor nodes using a novel inexpensive data structure entitled Ordered Binary Linked List(OBLL).Whenever an object passes over the sensor area,the recognizing sensor can immediately produce an OBLL along the object’s route.To retrieve the entire information,the OBLL can be traversed with logarithmic complexity which is much less than the traversing complexity of existing linked list structures.Performance evaluation and simulations were carried out to ensure that the suggested technique minimizes the number of messages and thus saving energy and extending the network life.
文摘Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network protocol in wireless networks.Based on the extensive review,it is noted that the substantial link percentage is symmetric,i.e.,many links are unidirectional.It is identified that the synchronous acknowledgement reliability is higher than the asynchronous message.Therefore,the process of establishing bidirectional link quality through asynchronous beacons underrates the link reliability of asym-metric links.It paves the way to exploit an investigation on asymmetric links to enhance network functions through link estimation.Here,a novel Learning-based Dynamic Tree routing(LDTR)model is proposed to improve network performance and delay.For the evaluation of delay measures,asymmetric link,interference,probability of transmission failure is evaluated.The proportion of energy consumed is used for monitoring energy conditions based on the total energy capacity.This learning model is a productive way for resolving the routing issues over the network model during uncertainty.The asymmetric path is chosen to achieve exploitation and exploration iteratively.The learning-based Dynamic Tree routing model is utilized to resolve the multi-objective routing problem.Here,the simulation is done with MATLAB 2020a simulation environment and path with energy-efficiency and lesser E2E delay is evaluated and compared with existing approaches like the Dyna-Q-network model(DQN),asymmetric MAC model(AMAC),and cooperative asymmetric MAC model(CAMAC)model.The simulation outcomes demonstrate that the anticipated LDTR model attains superior network performance compared to others.The average energy consump-tion is 250 J,packet energy consumption is 6.5 J,PRR is 50 bits/sec,95%PDR,average delay percentage is 20%.