One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne...One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.展开更多
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn...Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process.展开更多
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t...In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models.展开更多
To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross ...To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy.展开更多
In the early exploration of many oilfields,low-resistivity-low-contrast(LRLC)pay zones are easily overlooked due to the resistivity similarity to the water zones.Existing identification methods are model-driven and ca...In the early exploration of many oilfields,low-resistivity-low-contrast(LRLC)pay zones are easily overlooked due to the resistivity similarity to the water zones.Existing identification methods are model-driven and cannot yield satisfactory results when the causes of LRLC pay zones are complicated.In this study,after analyzing a large number of core samples,main causes of LRLC pay zones in the study area are discerned,which include complex distribution of formation water salinity,high irreducible water saturation due to micropores,and high shale volume.Moreover,different oil testing layers may have different causes of LRLC pay zones.As a result,in addition to the well log data of oil testing layers,well log data of adjacent shale layers are also added to the original dataset as reference data.The densitybased spatial clustering algorithm with noise(DBSCAN)is used to cluster the original dataset into 49 clusters.A new dataset is ultimately projected into a feature space with 49 dimensions.The new dataset and oil testing results are respectively treated as input and output to train the multi-layer perceptron(MLP).A total of 3192 samples are used for stratified 8-fold cross-validation,and the accuracy of the MLP is found to be 85.53%.展开更多
This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are...This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are proposed and trained with signal sets that arc generated from real harmonic waveforms. After training, each trained MLP is able to identify the two coefficients of each harmonic term of the input signal. The effectiveness of the new approach is evaluated by two experiments and is also compared to another recent MLP method. Experimental results show that the proposed MLPs approach enables to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. The new approach can be applied in harmonic compensation strategies with an active power filter to ensure power quality issues in electrical power systems.展开更多
Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio...Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.展开更多
The paper presents an extension multi-laye r p erceptron model that is capable of representing and reasoning propositional know ledge base. An extended version of propositional calculus is developed, and its some prop...The paper presents an extension multi-laye r p erceptron model that is capable of representing and reasoning propositional know ledge base. An extended version of propositional calculus is developed, and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of prop ositional knowledge base can be implement by the extension multi-layer perceptr on, and by learning, an unknown formula set can be found.展开更多
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio...The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.12072217).
文摘One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2023R1A2C1005950)Jana Shafi is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process.
基金supported by the Center for Mining,Electro-Mechanical Research of Hanoi University of Mining and Geology(HUMG),Hanoi,Vietnam。
文摘In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models.
基金Educational Research Project of Social Science for Young and Middle Aged Teachers in Fujian Province,China(No.JAS19371)Social Science Research Project of Education Department of Fujian Province,China(No.JAS160571)Key Project of Education and Teaching Reform of Undergraduate Universities in Fujian Province,China(No.FBJG20190130)。
文摘To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy.
基金funded by the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)
文摘In the early exploration of many oilfields,low-resistivity-low-contrast(LRLC)pay zones are easily overlooked due to the resistivity similarity to the water zones.Existing identification methods are model-driven and cannot yield satisfactory results when the causes of LRLC pay zones are complicated.In this study,after analyzing a large number of core samples,main causes of LRLC pay zones in the study area are discerned,which include complex distribution of formation water salinity,high irreducible water saturation due to micropores,and high shale volume.Moreover,different oil testing layers may have different causes of LRLC pay zones.As a result,in addition to the well log data of oil testing layers,well log data of adjacent shale layers are also added to the original dataset as reference data.The densitybased spatial clustering algorithm with noise(DBSCAN)is used to cluster the original dataset into 49 clusters.A new dataset is ultimately projected into a feature space with 49 dimensions.The new dataset and oil testing results are respectively treated as input and output to train the multi-layer perceptron(MLP).A total of 3192 samples are used for stratified 8-fold cross-validation,and the accuracy of the MLP is found to be 85.53%.
文摘This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are proposed and trained with signal sets that arc generated from real harmonic waveforms. After training, each trained MLP is able to identify the two coefficients of each harmonic term of the input signal. The effectiveness of the new approach is evaluated by two experiments and is also compared to another recent MLP method. Experimental results show that the proposed MLPs approach enables to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. The new approach can be applied in harmonic compensation strategies with an active power filter to ensure power quality issues in electrical power systems.
文摘Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.
文摘The paper presents an extension multi-laye r p erceptron model that is capable of representing and reasoning propositional know ledge base. An extended version of propositional calculus is developed, and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of prop ositional knowledge base can be implement by the extension multi-layer perceptr on, and by learning, an unknown formula set can be found.
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.