期刊文献+
共找到25,480篇文章
< 1 2 250 >
每页显示 20 50 100
Regression analysis and its application to oil and gas exploration:A case study of hydrocarbon loss recovery and porosity prediction,China
1
作者 Yang Li Xiaoguang Li +3 位作者 Mingyu Guo Chang Chen Pengbo Ni Zijian Huang 《Energy Geoscience》 EI 2024年第4期240-252,共13页
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not... In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery. 展开更多
关键词 regression analysis Oil and gas exploration Multiple linear regression model Nonlinear regression model Hydrocarbon loss recovery Porosity prediction
下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
2
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization Logistic regression Model K-Means Clustering analysis Elbow Rule Parameter Verification
下载PDF
Application of cluster analysis and stepwise regression in predicting the traffic volume of lanes 被引量:5
3
作者 张赫 王炜 顾怀中 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期359-362,共4页
Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections... Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections,cluster analysis and stepwise regression are integrated to predict the traffic volume of lanes at non-detector isolated controlled intersections.First cluster analysis is used to cluster the lanes of non-detector isolated signal-controlled intersections and the lanes of all signal-controlled intersections with detectors.Then, by the results of cluster analysis,the traffic volume samples are selected randomly and stepwise regression is used to predict the traffic volume of lanes at non-detector isolated signal-controlled intersections.The method is tested by the traffic volume data of lanes of the road network of Nanjing city.The problem of predicting the traffic volume of lanes at non-detector isolated signal-controlled intersections was resolved and can be widely used in urban traffic flow guidance and urban traffic control in cities without enough intersections equipped with detectors. 展开更多
关键词 intelligent transportation systems (ITS) cluster analysis stepwise regression
下载PDF
Population Quantity Variations of Oriental Fruit Fly (Bactrocera dorsalis Hendel) on the Basis of Stepwise Regression Analysis
4
作者 张丽莲 杨林楠 杨仕生 《Plant Diseases and Pests》 CAS 2010年第2期32-34,共3页
[Objective] The research aimed to study the significant influence factors of the population variations of oriental fruit fly. [Method] Using stepwise regression analysis, the population variations law of oriental frui... [Objective] The research aimed to study the significant influence factors of the population variations of oriental fruit fly. [Method] Using stepwise regression analysis, the population variations law of oriental fruit fly in Jianshui County of Yunnan province and the meteorological factors that caused its occurrence were analyzed. And the regression model was built. Finally, the regression model was tested on the basis of the data in Jianshui County of Yunnan Province during 2004-2006.[Result] The main meteorological factors that influenced the occurrence of oriental fruit fly were relative humidity, the lowest monthly temperature and rainfall. [Conclusion] This study will provide certain reference for the prediction researches on the time, quantity and occurrence peak of oriental fruit fly. 展开更多
关键词 Oriental fruit fly Stepwise regression analysis Meteorological factors
下载PDF
DDM regression analysis of the in-situ stress field in a non-linear fault zone 被引量:9
5
作者 Ke Li Ying-yi Wang Xing-chun Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第7期567-573,共7页
A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacem... A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacement discontinuity method (DDM) program. The Bar- ton-Bandis model and the Kulhaway model are adopted as the normal and the tangential deformation model of faults, respectively, where the Mohr-Coulomb failure criterion is satisfied. In practical projects, the values of the mechanical parameters of rock and faults are restricted in a bounded range for in-situ test, and the optimal mechanical parameters are obtained from this range by a loop. Comparing with the traditional finite element method (FEM), the DDM regression results are more accurate. 展开更多
关键词 displacement discontinuity method (DDM) in-situ stress regression analysis FAULTS ROCK
下载PDF
Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting 被引量:11
6
作者 Hemant Agrawal A.K.Mishra 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期202-207,共6页
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m... The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%. 展开更多
关键词 Peak particle velocity(PPV) Blast-induced ground vibration Scaled distance regression analysis Wave SUPERIMPOSITION SINGLE-HOLE BLASTING
下载PDF
Isolated Area Load Forecasting using Linear Regression Analysis: Practical Approach 被引量:18
7
作者 M. A. Mahmud 《Energy and Power Engineering》 2011年第4期547-550,共4页
This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through l... This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through linear regression and based on the identification of factors on which electrical load growth depends. To determine the identification factors, areas are selected whose histories of load growth rate known and the load growth deciding factors are similar to those of the isolated area. The proposed analysis is applied to an isolated area of Bangladesh, called Swandip where a past history of electrical load demand is not available and also there is no possibility of connecting the area with the main land grid system. 展开更多
关键词 ISOLATED Area LOAD Forecasting LINEAR regression analysis (LRA).
下载PDF
Discrimination of Transgenic Rice Based on Near Infrared Reflectance Spectroscopy and Partial Least Squares Regression Discriminant Analysis 被引量:7
8
作者 ZHANG Long WANG Shan-shan +2 位作者 DING Yan-fei PAN Jia-rong ZHU Cheng 《Rice science》 SCIE CSCD 2015年第5期245-249,共5页
Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi... Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice. 展开更多
关键词 near infrared reflectance spectroscopy genetically-modified food regulation gene protein gene partial least squares regression discrimiant analysis
下载PDF
Stability of mine ventilation system based on multiple regression analysis 被引量:12
9
作者 JIA Ting-gui LIU Jian 《Mining Science and Technology》 EI CAS 2009年第4期463-466,共4页
In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre... In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems. 展开更多
关键词 ventilation network STABILITY diagonal connection multiple regression analysis
下载PDF
Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines 被引量:10
10
作者 Leilei Liu Shaohe Zhang +1 位作者 Yung-Ming Cheng Li Liang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期671-682,共12页
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl... This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs. 展开更多
关键词 Slope stability Efficient reliability analysis Spatial variability Random field Multivariate adaptive regression splines Monte Carlo simulation
下载PDF
A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy 被引量:4
11
作者 Guodong WANG Lanxiang SUN +3 位作者 Wei WANG Tong CHEN Meiting GUO Peng ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第7期11-20,共10页
In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection m... In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection method called recursive feature elimination based on ridge regression(Ridge-RFE)for the original spectral data is recommended to make full use of the valid information of spectra.In the Ridge-RFE method,the absolute value of the ridge regression coefficient was used as a criterion to screen spectral characteristic,the feature with the absolute value of minimum weight in the input subset features was removed by recursive feature elimination(RFE),and the selected features were used as inputs of the partial least squares regression(PLS)model.The Ridge-RFE method based PLS model was used to measure the Fe,Si,Mg,Cu,Zn and Mn for 51 aluminum alloy samples,and the results showed that the root mean square error of prediction decreased greatly compared to the PLS model with full spectrum as input.The overall results demonstrate that the Ridge-RFE method is more efficient to extract the redundant features,make PLS model for better quantitative analysis results and improve model generalization ability. 展开更多
关键词 laser-induced breakdown spectroscopy feature selection ridge regression recursive feature elimination quantitative analysis
下载PDF
Electricity price forecasting using generalized regression neural network based on principal components analysis 被引量:1
12
作者 牛东晓 刘达 邢棉 《Journal of Central South University》 SCIE EI CAS 2008年第S2期316-320,共5页
A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the mai... A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%. 展开更多
关键词 ELECTRICITY PRICE forecasting GENERALIZED regression NEURAL NETWORK principal COMPONENTS analysis
下载PDF
Biological stability in drinking water: a regression analysis of influencing factors 被引量:1
13
作者 LUWei ZHANGXiao-jian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第3期395-398,共4页
Some parameters, such as assimilable organic carbon(AOC), chloramine residual, water temperature, and water residence time, were measured in drinking water from distribution systems in a northern city of China. The me... Some parameters, such as assimilable organic carbon(AOC), chloramine residual, water temperature, and water residence time, were measured in drinking water from distribution systems in a northern city of China. The measurement results illustrate that when chloramine residual is more than 0.3 mg/L or AOC content is below 50 μg/L, the biological stability of drinking water can be controlled. Both chloramine residual and AOC have a good relationship with Heterotrophic Plate Counts(HPC)(log value), the correlation coefficient was -0.64 and 0.33, respectively. By regression analysis of the survey data, a statistical equation is presented and it is concluded that disinfectant residual exerts the strongest influence on bacterial growth and AOC is a suitable index to assess the biological stability in the drinking water. 展开更多
关键词 AOC biological stability HPC residual chloramines regression analysis
下载PDF
Comparison of dimension reduction-based logistic regression models for case-control genome-wide association study:principal components analysis vs.partial least squares 被引量:2
14
作者 Honggang Yi Hongmei Wo +9 位作者 Yang Zhao Ruyang Zhang Junchen Dai Guangfu Jin Hongxia Ma Tangchun Wu Zhibin Hu Dongxin Lin Hongbing Shen Feng Chen 《The Journal of Biomedical Research》 CAS CSCD 2015年第4期298-307,共10页
With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistica... With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistical strategy is traditional logistical regression (LR) based on single-locus analysis. However, such a single-locus analysis leads to the well-known multiplicity problem, with a risk of inflating type I error and reducing power. Dimension reduction-based techniques, such as principal component-based logistic regression (PC-LR), partial least squares-based logistic regression (PLS-LR), have recently gained much attention in the analysis of high dimensional genomic data. However, the perfor- mance of these methods is still not clear, especially in GWAS. We conducted simulations and real data application to compare the type I error and power of PC-LR, PLS-LR and LR applicable to GWAS within a defined single nucleotide polymorphism (SNP) set region. We found that PC-LR and PLS can reasonably control type I error under null hypothesis. On contrast, LR, which is corrected by Bonferroni method, was more conserved in all simulation settings. In particular, we found that PC-LR and PLS-LR had comparable power and they both outperformed LR, especially when the causal SNP was in high linkage disequilibrium with genotyped ones and with a small effective size in simulation. Based on SNP set analysis, we applied all three methods to analyze non-small cell lung cancer GWAS data. 展开更多
关键词 principal components analysis partial least squares-based logistic regression genome-wide association study type I error POWER
下载PDF
Regression Analysis of the Number of Association Rules 被引量:1
15
作者 Wei-Guo Yi Ming-Yu Lu Zhi Liu 《International Journal of Automation and computing》 EI 2011年第1期78-82,共5页
The typical model, which involves the measures: support, confidence, and interest, is often adapted to mining association rules. In the model, the related parameters are usually chosen by experience; consequently, th... The typical model, which involves the measures: support, confidence, and interest, is often adapted to mining association rules. In the model, the related parameters are usually chosen by experience; consequently, the number of useful rules is hard to estimate. If the number is too large, we cannot effectively extract the meaningful rules. This paper analyzes the meanings of the parameters and designs a variety of equations between the number of rules and the parameters by using regression method. Finally, we experimentally obtain a preferable regression equation. This paper uses multiple correlation coeficients to test the fitting efiects of the equations and uses significance test to verify whether the coeficients of parameters are significantly zero or not. The regression equation that has a larger multiple correlation coeficient will be chosen as the optimally fitted equation. With the selected optimal equation, we can predict the number of rules under the given parameters and further optimize the choice of the three parameters and determine their ranges of values. 展开更多
关键词 Association rules regression analysis multiple correlation coeficients INTEREST SUPPORT confidence.
下载PDF
Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network, and Support Vector Machine 被引量:2
16
作者 Gwang-Hee Kim Jae-Min Shin +1 位作者 Sangyong Kim Yoonseok Shin 《Journal of Building Construction and Planning Research》 2013年第1期1-7,共7页
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin... Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects. 展开更多
关键词 ESTIMATING Construction COSTS regression analysis NEURAL Network Support VECTOR MACHINE
下载PDF
Testing heteroscedasticity in nonparametric regression models based on residual analysis 被引量:1
17
作者 ZHANG Lei MEI Chang-lin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第3期265-272,共8页
The importance of detecting heteroscedasticity in regression analysis is widely recognized because efficient inference for the regression function requires that heteroscedasticity should be taken into account. In this... The importance of detecting heteroscedasticity in regression analysis is widely recognized because efficient inference for the regression function requires that heteroscedasticity should be taken into account. In this paper, a simple test for heteroscedasticity is proposed in nonparametric regression based on residual analysis. Furthermore, some simulations with a comparison with Dette and Munk's method are conducted to evaluate the performance of the proposed test. The results demonstrate that the method in this paper performs quite satisfactorily and is much more powerful than Dette and Munk's method in some cases. 展开更多
关键词 HETEROSCEDASTICITY nonparametric regression residual analysis
下载PDF
Regression analysis of major parameters affecting the intensity of coal and gas outbursts in laboratory 被引量:7
18
作者 Geng Jiabo Xu Jiang +3 位作者 Nie Wen Peng Shoujian Zhang Chaolin Luo Xiaohang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期327-332,共6页
Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coa... Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091). 展开更多
关键词 Coal and gas outburst Gas pressure regression analysis ANOVA CTA
下载PDF
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:1
19
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 multi-layer regression algorithm fusion Stacking gensemblelearning Sparrow search algorithm Slope safety factor Data prediction
下载PDF
Limit analysis of ultimate uplift capacity and failure mechanism ofshallow plate anchors in multi-layered soils 被引量:1
20
作者 LYU Cheng WANG Zhu-hong +1 位作者 ZENG Zheng-qiang ZHANG Xiao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2049-2061,共13页
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ... Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient. 展开更多
关键词 limit analysis dilatancy coefficient ultimate uplift capacity plate anchors multi-layered soils
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部