The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow ann...The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.展开更多
Prediction of dryout point is experimentally investigated with deionized water upflowing through narrow annular channel with 1.0 mm and 1.5 mm gap respectively. The annulus with narrow gap is bilaterally heated by AC ...Prediction of dryout point is experimentally investigated with deionized water upflowing through narrow annular channel with 1.0 mm and 1.5 mm gap respectively. The annulus with narrow gap is bilaterally heated by AC current power supply. The experimental conditions covered a range of pressure from 0.8 to 3.5 MPa, mass flux of 26.6 to 68.8 kg?m-2?s-1 and wall heat flux of 5 to 50 kW?m-2. The location of dryout is obtained by observing a sudden rise in surface temperature. Kutateladze correlation is cited and modified to predict the location of dryout and proved to be not a proper one. Considering in detail the effects of geometry of annuli, pressure, mass flux and heat flux on dryout, an empirical correction is finally developed to predict dryout point in narrow annular gap under low flow condition, which has a good agreement with experimental data.展开更多
基金This work is supported by the Project of National Natural Science Foundation of China (No. 50076014) and the Project of Major State Basic Research Program (No. G2000026303).
文摘The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.
文摘Prediction of dryout point is experimentally investigated with deionized water upflowing through narrow annular channel with 1.0 mm and 1.5 mm gap respectively. The annulus with narrow gap is bilaterally heated by AC current power supply. The experimental conditions covered a range of pressure from 0.8 to 3.5 MPa, mass flux of 26.6 to 68.8 kg?m-2?s-1 and wall heat flux of 5 to 50 kW?m-2. The location of dryout is obtained by observing a sudden rise in surface temperature. Kutateladze correlation is cited and modified to predict the location of dryout and proved to be not a proper one. Considering in detail the effects of geometry of annuli, pressure, mass flux and heat flux on dryout, an empirical correction is finally developed to predict dryout point in narrow annular gap under low flow condition, which has a good agreement with experimental data.