Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,...Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.展开更多
In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process....In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.Traditional fabric defect detection algorithms can only detect specific materials and specific fabric defect types;in addition,their detection efficiency is low,and their detection results are relatively poor.Deep learning-based methods have many advantages in the field of fabric defect detection,however,such methods are less effective in identifying multiscale fabric defects and defects with complex shapes.Therefore,we propose an effective algorithm,namely multilayer feature extraction combined with deformable convolution(MFDC),for fabric defect detection.In MFDC,multi-layer feature extraction is used to fuse the underlying location features with high-level classification features through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.On this basis,a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of irregularly shaped fabric defects.In this approach,Roi Align and Cascade-RCNN are integrated to enhance the adaptability of the algorithm in materials with complex patterned backgrounds.The experimental results show that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with complex shapes,at the expense of a small increase in detection time.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS...Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ...To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages.展开更多
The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subje...The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged.展开更多
RNAs play crucial and versatile roles in cellular biochemical reactions.Since experimental approaches of determining their three-dimensional(3D)structures are costly and less efficient,it is greatly advantageous to de...RNAs play crucial and versatile roles in cellular biochemical reactions.Since experimental approaches of determining their three-dimensional(3D)structures are costly and less efficient,it is greatly advantageous to develop computational methods to predict RNA 3D structures.For these methods,designing a model or scoring function for structure quality assessment is an essential step but this step poses challenges.In this study,we designed and trained a deep learning model to tackle this problem.The model was based on a graph convolutional network(GCN)and named RNAGCN.The model provided a natural way of representing RNA structures,avoided complex algorithms to preserve atomic rotational equivalence,and was capable of extracting features automatically out of structural patterns.Testing results on two datasets convincingly demonstrated that RNAGCN performs similarly to or better than four leading scoring functions.Our approach provides an alternative way of RNA tertiary structure assessment and may facilitate RNA structure predictions.RNAGCN can be downloaded from https://gitee.com/dcw-RNAGCN/rnagcn.展开更多
A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-la...A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.展开更多
With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simu...With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simultaneously.To enhance the forecasting performance,a novel edge-enabled probabilistic graph structure learning model(PGSLM)is proposed,which learns the graph structure and parameters by the edge sensing information and discrete probability distribution on the edges of the traffic road network.To obtain the spatio-temporal dependencies of traffic data,the learned dynamic graphs are combined with a predefined static graph to generate the graph convolution part of the recurrent graph convolution module.During the training process,a new graph training loss is introduced,which is composed of the K nearest neighbor(KNN)graph constructed by the traffic feature tensors and the graph structure.Detailed experimental results show that,compared with existing models,the proposed PGSLM improves the traffic prediction performance in terms of average absolute error and root mean square error in IoV.展开更多
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio...The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.展开更多
The Keras deep learning framework is employed to study MRI brain data in a preliminary analysis of brain structure using a convolutional neural network.The results obtained are matched with the content of personality ...The Keras deep learning framework is employed to study MRI brain data in a preliminary analysis of brain structure using a convolutional neural network.The results obtained are matched with the content of personality questionnaires.The Big Five personality traits provide easy differentiation for dividing personalities into different groups.Until now,the highest accuracy obtained from the results of personality prediction from the analysis of brain structure is about 70%.Although there is still no effective evidence to prove a clear relationship between brain structure and personality,the obtained results could prove helpful in understanding the basic relationship between brain structure and personality characteristics.展开更多
A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is uti...A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is utilized for the spatial discretization. The present study reveals that the method is efficient for solving the problem.展开更多
Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree a...Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD.Signal datasets were obtained by numerical experiments and vibration experiments,respectively.Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage.Results indicated a 5%to 10%improvement in detection accuracy compared to using original datasets without feature selection,demonstrating the feasibility of this method.The proposed method,based on tree model and classification,addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring.展开更多
The automated interpretation of rock structure can improve the efficiency,accuracy,and consistency of the geological risk assessment of tunnel face.Because of the high uncertainties in the geological images as a resul...The automated interpretation of rock structure can improve the efficiency,accuracy,and consistency of the geological risk assessment of tunnel face.Because of the high uncertainties in the geological images as a result of different regional rock types,as well as in-situ conditions(e.g.,temperature,humidity,and construction procedure),previous automated methods have limited performance in classification of rock structure of tunnel face during construction.This paper presents a framework for classifying multiple rock structures based on the geological images of tunnel face using convolutional neural networks(CNN),namely Inception-ResNet-V2(IRV2).A prototype recognition system is implemented to classify 5 types of rock structures including mosaic,granular,layered,block,and fragmentation structures.The proposed IRV2 network is trained by over 35,000 out of 42,400 images extracted from over 150 sections of tunnel faces and tested by the remaining 7400 images.Furthermore,different hyperparameters of the CNN model are introduced to optimize the most efficient algorithm parameter.Among all the discussed models,i.e.,ResNet-50,ResNet-101,and Inception-v4,Inception-ResNet-V2 exhibits the best performance in terms of various indicators,such as precision,recall,F-score,and testing time per image.Meanwhile,the model trained by a large database can obtain the object features more comprehensively,leading to higher accuracy.Compared with the original image classification method,the sub-image method is closer to the reality considering both the accuracy and the perspective of error divergence.The experimental results reveal that the proposed method is optimal and efficient for automated classification of rock structure using the geological images of the tunnel face.展开更多
Mesoscale eddies,which are mainly caused by baroclinic effects in the ocean,are common oceanic phenomena in the Northwest Pacific Ocean and play very important roles in ocean circulation,ocean dynamics and material en...Mesoscale eddies,which are mainly caused by baroclinic effects in the ocean,are common oceanic phenomena in the Northwest Pacific Ocean and play very important roles in ocean circulation,ocean dynamics and material energy transport.The temperature structure of mesoscale eddies will lead to variations in oceanic baroclinity,which can be reflected in the sea level anomaly(SLA).Deep learning can automatically extract different features of data at multiple levels without human intervention,and find the hidden relations of data.Therefore,combining satellite SLA data with deep learning is a good way to invert the temperature structure inside eddies.This paper proposes a deep learning algorithm,eddy convolution neural network(ECN),which can train the relationship between mesoscale eddy temperature anomalies and sea level anomalies(SLAs),relying on the powerful feature extraction and learning abilities of convolutional neural networks.After obtaining the temperature structure model through ECN,according to climatic temperature data,the temperature structure of mesoscale eddies in the Northwest Pacific is retrieved with a spatial resolution of 0.25°at depths of 0–1000 m.The overall accuracy of the ECN temperature structure is verified using Argo profiles at the locations of cyclonic and anticyclonic eddies during 2015–2016.Taking 10%error as the acceptable threshold of accuracy,89.64%and 87.25%of the cyclonic and anticyclonic eddy temperature structures obtained by ECN met the threshold,respectively.展开更多
Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercia...Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.展开更多
RNAs play crucial and versatile roles in biological processes. Computational prediction approaches can help to understand RNA structures and their stabilizing factors, thus providing information on their functions, an...RNAs play crucial and versatile roles in biological processes. Computational prediction approaches can help to understand RNA structures and their stabilizing factors, thus providing information on their functions, and facilitating the design of new RNAs. Machine learning (ML) techniques have made tremendous progress in many fields in the past few years. Although their usage in protein-related fields has a long history, the use of ML methods in predicting RNA tertiary structures is new and rare. Here, we review the recent advances of using ML methods on RNA structure predictions and discuss the advantages and limitation, the difficulties and potentials of these approaches when applied in the field.展开更多
In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggreg...In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference.展开更多
Glass fibre-reinforced(GFR)structure is extensively used in radome,spoiler and some other equipment.In engineering practice,due to the influence of wear,aging,impact,chemical corrosion of surface structure and other f...Glass fibre-reinforced(GFR)structure is extensively used in radome,spoiler and some other equipment.In engineering practice,due to the influence of wear,aging,impact,chemical corrosion of surface structure and other factors,the internal structure of this kind of structure gradually evolves into a defect state and expands to form defects such as bubbles,scratches,shorts,cracks,cavitation erosion,stains and other defects.These defects have posed a serious threat to the quality and performance of GFR structure.From the propagation process of GFR structure defects,its duration is random and may be very short.Therefore,designing a scientific micro defect intelligent detection system for GFR structure to enhance the maintainability of GFR structure will not only help to reduce emergencies,but also have positive theoretical significance and application value to ensure safe production and operation.Firstly,the defect detection mechanism of GFR structure is discussed,and the defect detection principle and defect area identification method are analyzed.Secondly,the processing process of defect edge signal is discussed,a classifier based on MLP is established,and the algorithm of the classifier is designed.Finally,the effectiveness of this method is proved by real-time monitoring and defect diagnosis of a typical GFR structure.The experimental results show that this method improves the efficiency of defect detection and has high defect feature recognition accuracy,which provides a new idea for the on-line detection of GFR structure defects.展开更多
文摘Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.
基金supported in part by the National Science Foundation of China under Grant 62001236in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 20KJA520003.
文摘In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.Traditional fabric defect detection algorithms can only detect specific materials and specific fabric defect types;in addition,their detection efficiency is low,and their detection results are relatively poor.Deep learning-based methods have many advantages in the field of fabric defect detection,however,such methods are less effective in identifying multiscale fabric defects and defects with complex shapes.Therefore,we propose an effective algorithm,namely multilayer feature extraction combined with deformable convolution(MFDC),for fabric defect detection.In MFDC,multi-layer feature extraction is used to fuse the underlying location features with high-level classification features through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.On this basis,a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of irregularly shaped fabric defects.In this approach,Roi Align and Cascade-RCNN are integrated to enhance the adaptability of the algorithm in materials with complex patterned backgrounds.The experimental results show that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with complex shapes,at the expense of a small increase in detection time.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
基金Supported by the National Key Research and Development Program of China(No.2022YFF0801400)the National Natural Science Foundation of China(No.42176010)the Natural Science Foundation of Shandong Province,China(No.ZR2021MD022)。
文摘Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
基金supported by the National Key R&D Program of China (Grant No.2022YFC3003401)the National Natural Science Foundation of China (Grant Nos.42041006 and 42377137).
文摘To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages.
文摘The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged.
基金funded by the National Natural Science Foundation of China(Grant Nos.11774158 to JZ,11934008 to WW,and 11974173 to WFL)。
文摘RNAs play crucial and versatile roles in cellular biochemical reactions.Since experimental approaches of determining their three-dimensional(3D)structures are costly and less efficient,it is greatly advantageous to develop computational methods to predict RNA 3D structures.For these methods,designing a model or scoring function for structure quality assessment is an essential step but this step poses challenges.In this study,we designed and trained a deep learning model to tackle this problem.The model was based on a graph convolutional network(GCN)and named RNAGCN.The model provided a natural way of representing RNA structures,avoided complex algorithms to preserve atomic rotational equivalence,and was capable of extracting features automatically out of structural patterns.Testing results on two datasets convincingly demonstrated that RNAGCN performs similarly to or better than four leading scoring functions.Our approach provides an alternative way of RNA tertiary structure assessment and may facilitate RNA structure predictions.RNAGCN can be downloaded from https://gitee.com/dcw-RNAGCN/rnagcn.
基金supported by National Natural Science Foundation of China(Nos.12075046 and 11775042)。
文摘A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.
基金supported by the project of the National Natural Science Foundation of China(No.61772562)the Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010225)the Fundamental Research Funds for the Central Universities(No.2662022YJ012)。
文摘With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simultaneously.To enhance the forecasting performance,a novel edge-enabled probabilistic graph structure learning model(PGSLM)is proposed,which learns the graph structure and parameters by the edge sensing information and discrete probability distribution on the edges of the traffic road network.To obtain the spatio-temporal dependencies of traffic data,the learned dynamic graphs are combined with a predefined static graph to generate the graph convolution part of the recurrent graph convolution module.During the training process,a new graph training loss is introduced,which is composed of the K nearest neighbor(KNN)graph constructed by the traffic feature tensors and the graph structure.Detailed experimental results show that,compared with existing models,the proposed PGSLM improves the traffic prediction performance in terms of average absolute error and root mean square error in IoV.
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.
基金This work was supported in part by the National Natural Science Foundation of China(61972174)the Science and Technology Planning Project of Guangdong Province(2020A0505100018)+1 种基金Guangdong Key-Project for Applied Fundamental Research(2018KZDXM076)Grants-in-Aid for Scientific Research(JP17K00312,JP17H03326)of Japan Society for the Promotion of Science(JSPS).
文摘The Keras deep learning framework is employed to study MRI brain data in a preliminary analysis of brain structure using a convolutional neural network.The results obtained are matched with the content of personality questionnaires.The Big Five personality traits provide easy differentiation for dividing personalities into different groups.Until now,the highest accuracy obtained from the results of personality prediction from the analysis of brain structure is about 70%.Although there is still no effective evidence to prove a clear relationship between brain structure and personality,the obtained results could prove helpful in understanding the basic relationship between brain structure and personality characteristics.
基金Supported by the NNSF of China(10626017)the Science Foundation of the Education Committee of Heilongjiang Province(11511276)the Foundation of Heilongjiang Province(LBH-Q05114).
文摘A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is utilized for the spatial discretization. The present study reveals that the method is efficient for solving the problem.
基金supported by the Project of Guangdong Province High Level University Construction for Guangdong University of Technology(Grant No.262519003)the College Student Innovation Training Program of Guangdong University of Technology(Grant Nos.S202211845154 and xj2023118450384).
文摘Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD.Signal datasets were obtained by numerical experiments and vibration experiments,respectively.Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage.Results indicated a 5%to 10%improvement in detection accuracy compared to using original datasets without feature selection,demonstrating the feasibility of this method.The proposed method,based on tree model and classification,addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring.
基金supported by the Natural Science Foundation Committee Program of China(Grant Nos.1538009 and 51778474)Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)+1 种基金the Fundamental Research Funds for the Central Universities in China(Grant No.0200219129)Key innovation team program of innovation talents promotion plan by MOST of China(Grant No.2016RA4059)。
文摘The automated interpretation of rock structure can improve the efficiency,accuracy,and consistency of the geological risk assessment of tunnel face.Because of the high uncertainties in the geological images as a result of different regional rock types,as well as in-situ conditions(e.g.,temperature,humidity,and construction procedure),previous automated methods have limited performance in classification of rock structure of tunnel face during construction.This paper presents a framework for classifying multiple rock structures based on the geological images of tunnel face using convolutional neural networks(CNN),namely Inception-ResNet-V2(IRV2).A prototype recognition system is implemented to classify 5 types of rock structures including mosaic,granular,layered,block,and fragmentation structures.The proposed IRV2 network is trained by over 35,000 out of 42,400 images extracted from over 150 sections of tunnel faces and tested by the remaining 7400 images.Furthermore,different hyperparameters of the CNN model are introduced to optimize the most efficient algorithm parameter.Among all the discussed models,i.e.,ResNet-50,ResNet-101,and Inception-v4,Inception-ResNet-V2 exhibits the best performance in terms of various indicators,such as precision,recall,F-score,and testing time per image.Meanwhile,the model trained by a large database can obtain the object features more comprehensively,leading to higher accuracy.Compared with the original image classification method,the sub-image method is closer to the reality considering both the accuracy and the perspective of error divergence.The experimental results reveal that the proposed method is optimal and efficient for automated classification of rock structure using the geological images of the tunnel face.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1402608,2016YFC1400904,2016YFC1400900 and 2019YFD0901000。
文摘Mesoscale eddies,which are mainly caused by baroclinic effects in the ocean,are common oceanic phenomena in the Northwest Pacific Ocean and play very important roles in ocean circulation,ocean dynamics and material energy transport.The temperature structure of mesoscale eddies will lead to variations in oceanic baroclinity,which can be reflected in the sea level anomaly(SLA).Deep learning can automatically extract different features of data at multiple levels without human intervention,and find the hidden relations of data.Therefore,combining satellite SLA data with deep learning is a good way to invert the temperature structure inside eddies.This paper proposes a deep learning algorithm,eddy convolution neural network(ECN),which can train the relationship between mesoscale eddy temperature anomalies and sea level anomalies(SLAs),relying on the powerful feature extraction and learning abilities of convolutional neural networks.After obtaining the temperature structure model through ECN,according to climatic temperature data,the temperature structure of mesoscale eddies in the Northwest Pacific is retrieved with a spatial resolution of 0.25°at depths of 0–1000 m.The overall accuracy of the ECN temperature structure is verified using Argo profiles at the locations of cyclonic and anticyclonic eddies during 2015–2016.Taking 10%error as the acceptable threshold of accuracy,89.64%and 87.25%of the cyclonic and anticyclonic eddy temperature structures obtained by ECN met the threshold,respectively.
基金the National Natural Science Foundation of China(No:21703285)。
文摘Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11774158, 11974173, 11774157, and 11934008)。
文摘RNAs play crucial and versatile roles in biological processes. Computational prediction approaches can help to understand RNA structures and their stabilizing factors, thus providing information on their functions, and facilitating the design of new RNAs. Machine learning (ML) techniques have made tremendous progress in many fields in the past few years. Although their usage in protein-related fields has a long history, the use of ML methods in predicting RNA tertiary structures is new and rare. Here, we review the recent advances of using ML methods on RNA structure predictions and discuss the advantages and limitation, the difficulties and potentials of these approaches when applied in the field.
基金National Natural Science Foundation of China(No.61806006)Jiangsu University Superior Discipline Construction Project。
文摘In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference.
基金Guangdong Provincial University Key Special Project Fund(No.2020zdzx2032)National Entrepreneurship Practice Fund(No.202013684009s)。
文摘Glass fibre-reinforced(GFR)structure is extensively used in radome,spoiler and some other equipment.In engineering practice,due to the influence of wear,aging,impact,chemical corrosion of surface structure and other factors,the internal structure of this kind of structure gradually evolves into a defect state and expands to form defects such as bubbles,scratches,shorts,cracks,cavitation erosion,stains and other defects.These defects have posed a serious threat to the quality and performance of GFR structure.From the propagation process of GFR structure defects,its duration is random and may be very short.Therefore,designing a scientific micro defect intelligent detection system for GFR structure to enhance the maintainability of GFR structure will not only help to reduce emergencies,but also have positive theoretical significance and application value to ensure safe production and operation.Firstly,the defect detection mechanism of GFR structure is discussed,and the defect detection principle and defect area identification method are analyzed.Secondly,the processing process of defect edge signal is discussed,a classifier based on MLP is established,and the algorithm of the classifier is designed.Finally,the effectiveness of this method is proved by real-time monitoring and defect diagnosis of a typical GFR structure.The experimental results show that this method improves the efficiency of defect detection and has high defect feature recognition accuracy,which provides a new idea for the on-line detection of GFR structure defects.