Retinal vessel segmentation is a challenging medical task owing to small size of dataset,micro blood vessels and low image contrast.To address these issues,we introduce a novel convolutional neural network in this pap...Retinal vessel segmentation is a challenging medical task owing to small size of dataset,micro blood vessels and low image contrast.To address these issues,we introduce a novel convolutional neural network in this paper,which takes the advantage of both adversarial learning and recurrent neural network.An iterative design of network with recurrent unit is performed to refine the segmentation results from input retinal image gradually.Recurrent unit preserves high-level semantic information for feature reuse,so as to output a sufficiently refined segmentation map instead of a coarse mask.Moreover,an adversarial loss is imposing the integrity and connectivity constraints on the segmented vessel regions,thus greatly reducing topology errors of segmentation.The experimental results on the DRIVE dataset show that our method achieves area under curve and sensitivity of 98.17%and 80.64%,respectively.Our method achieves superior performance in retinal vessel segmentation compared with other existing state-of-the-art methods.展开更多
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S...Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.展开更多
Simple linear iterative cluster(SLIC) is widely used because controllable superpixel number, accurate edge covering, symmetrical production and fast speed of calculation. The main problem of the SLIC algorithm is its ...Simple linear iterative cluster(SLIC) is widely used because controllable superpixel number, accurate edge covering, symmetrical production and fast speed of calculation. The main problem of the SLIC algorithm is its under-segmentation when applied to segment artificial structure images with unobvious boundaries and narrow regions. Therefore, an improved clustering segmentation algorithm to correct the segmentation results of SLIC is presented in this paper. The allocation of pixels is not only related to its own characteristic, but also to those of its surrounding pixels.Hence, it is appropriate to improve the standard SLIC through the pixels by focusing on boundaries. An improved SLIC method adheres better to the boundaries in the image is proposed, by using the first and second order difference operators as magnified factors. Experimental results demonstrate that the proposed method achieves an excellent boundary adherence for artificial structure images. The application of the proposed method is extended to images with an unobvious boundary in the Berkeley Segmentation Dataset BSDS500. In comparison with SLIC, the boundary adherence is increased obviously.展开更多
To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level ...To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations.展开更多
<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) syst...<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) systems for chest radiography. However, if the chest X-ray images themselves are used as training data for the AI-CAD system, the system might learn the irrelevant image-based information resulting in the decrease of system’s performance. In this study, we propose a lung region segmentation method that can automatically remove the shoulder and scapula regions, mediastinum, and diaphragm regions in advance from various chest X-ray images to be used as learning data. The proposed method consists of three main steps. First, employ the simple linear iterative clustering algorithm, the lazy snapping technique and local entropy filter to generate an entropy map. Second, apply morphological operations to the entropy map to obtain a lung mask. Third, perform automated segmentation of the lung field using the obtained mask. A total of 30 images were used for the experiments. In order to verify the effectiveness of the proposed method, two other texture maps, namely, the maps created from the standard deviation filtering and the range filtering, were used for comparison. As a result, the proposed method using the entropy map was able to appropriately remove the unnecessary regions. In addition, this method was able to remove the markers present in the image, but the other two methods could not. The experimental results have revealed that our proposed method is a highly generalizable and useful algorithm. We believe that this method might act an important role to enhance the performance of AI-CAD systems for chest X-ray images.</span>展开更多
Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is pro...Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is proposed.Methods To obtain refined features of retinal blood vessels,three cascade connected UNet networks are employed.To deal with the problem of difference between the parts of encoder and decoder,in MF2ResU-Net,shortcut connections are used to combine the encoder and decoder layers in the blocks.To refine the feature of segmentation,atrous spatial pyramid pooling(ASPP)is embedded to achieve multi-scale features for the final segmentation networks.Results The MF2ResU-Net was superior to the existing methods on the criteria of sensitivity(Sen),specificity(Spe),accuracy(ACC),and area under curve(AUC),the values of which are 0.8013 and 0.8102,0.9842 and 0.9809,0.9700 and 0.9776,and 0.9797 and 0.9837,respectively for DRIVE and CHASE DB1.The results of experiments demonstrated the effectiveness and robustness of the model in the segmentation of complex curvature and small blood vessels.Conclusion Based on residual connections and multi-feature fusion,the proposed method can obtain accurate segmentation of retinal blood vessels by refining the segmentation features,which can provide another diagnosis method for computer-aided Chinese medical diagnosis.展开更多
A novel stepwise thresholding method for fuzzy image segmentation is proposed. Unlike the published iterative or recursive thresholding mehtods, this method segments regions into sub-regions iteratively by increasing ...A novel stepwise thresholding method for fuzzy image segmentation is proposed. Unlike the published iterative or recursive thresholding mehtods, this method segments regions into sub-regions iteratively by increasing threshold value in a stepwise manner, based on a preset intensity homogeneity criteria. The method is particularly suited to segmentation of the laser scanning confocal microscopy (LSCM) images, computerised tomography (CT) images, magnetic resonance (MR) images, fingerprint images, etc. The method has been tested on some typical fuzzy image data sets. In this paper, the novel stepwise thresholding is first addressed. Next a new method of region labelling for region extraction is introduced. Then the design of intensity homogeneity segmentation criteria is presented. Some examples of the experiment results of fuzzy image segmentation by the method are given at the end.展开更多
目的:采用深度学习方法,通过人在回路的方式进行迭代式标注-训练,建立垂体分割模型,实现垂体体积人工智能(AI)测量。方法:将1285例颅脑3D T 1WI图像按5~15岁、16~25岁、26~50岁、51~70岁年龄段分组,每个年龄组随机选择80例,分成4批次进...目的:采用深度学习方法,通过人在回路的方式进行迭代式标注-训练,建立垂体分割模型,实现垂体体积人工智能(AI)测量。方法:将1285例颅脑3D T 1WI图像按5~15岁、16~25岁、26~50岁、51~70岁年龄段分组,每个年龄组随机选择80例,分成4批次进行试验。初始每组选择3例图像进行人工预标注神经垂体和腺垂体,输入计算机进行学习,获取初始模型。应用模型对一批数据进行分割,获得分割后的神经垂体、腺垂体与垂体总体积数据,将分割结果进行人工校准,获得校准后相对应的体积数据作为金标准。用前一组校准后的分割图像进行计算机迭代式学习优化模型,再用优化后模型对新一组图像分割与校准,重复上述过程,最终将校准前后差异没有统计学意义的数据认定深度学习建模成功。数据采用配对t检验、Dice和Spearman相关性分析进行统计。结果:从第2批次开始,除5~15岁年龄段外,其它年龄段神经垂体体积在校准前后的差异没有统计学意义,腺垂体与垂体总体积的差异有统计学意义(P<0.05)。第4批次,各年龄段神经垂体、腺垂体与垂体总体积在校准前后的差异均无统计学意义(P=0.137~0.928),Dice值大于0.941,Spearman相关系数大于0.969。结论:通过迭代式训练进行深度学习建模可构建垂体分割模型,实现垂体体积AI自动测量。展开更多
针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过S...针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。展开更多
文摘Retinal vessel segmentation is a challenging medical task owing to small size of dataset,micro blood vessels and low image contrast.To address these issues,we introduce a novel convolutional neural network in this paper,which takes the advantage of both adversarial learning and recurrent neural network.An iterative design of network with recurrent unit is performed to refine the segmentation results from input retinal image gradually.Recurrent unit preserves high-level semantic information for feature reuse,so as to output a sufficiently refined segmentation map instead of a coarse mask.Moreover,an adversarial loss is imposing the integrity and connectivity constraints on the segmented vessel regions,thus greatly reducing topology errors of segmentation.The experimental results on the DRIVE dataset show that our method achieves area under curve and sensitivity of 98.17%and 80.64%,respectively.Our method achieves superior performance in retinal vessel segmentation compared with other existing state-of-the-art methods.
基金supported by the Specialized Research Found for the Doctoral Program of Higher Education (20070699013)the Natural Science Foundation of Shaanxi Province (2006F05)the Aeronautical Science Foundation (05I53076)
文摘Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.
基金Supported by Defense Industrial Technology Development Program(JCKY2017602C016)
文摘Simple linear iterative cluster(SLIC) is widely used because controllable superpixel number, accurate edge covering, symmetrical production and fast speed of calculation. The main problem of the SLIC algorithm is its under-segmentation when applied to segment artificial structure images with unobvious boundaries and narrow regions. Therefore, an improved clustering segmentation algorithm to correct the segmentation results of SLIC is presented in this paper. The allocation of pixels is not only related to its own characteristic, but also to those of its surrounding pixels.Hence, it is appropriate to improve the standard SLIC through the pixels by focusing on boundaries. An improved SLIC method adheres better to the boundaries in the image is proposed, by using the first and second order difference operators as magnified factors. Experimental results demonstrate that the proposed method achieves an excellent boundary adherence for artificial structure images. The application of the proposed method is extended to images with an unobvious boundary in the Berkeley Segmentation Dataset BSDS500. In comparison with SLIC, the boundary adherence is increased obviously.
文摘To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations.
文摘<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) systems for chest radiography. However, if the chest X-ray images themselves are used as training data for the AI-CAD system, the system might learn the irrelevant image-based information resulting in the decrease of system’s performance. In this study, we propose a lung region segmentation method that can automatically remove the shoulder and scapula regions, mediastinum, and diaphragm regions in advance from various chest X-ray images to be used as learning data. The proposed method consists of three main steps. First, employ the simple linear iterative clustering algorithm, the lazy snapping technique and local entropy filter to generate an entropy map. Second, apply morphological operations to the entropy map to obtain a lung mask. Third, perform automated segmentation of the lung field using the obtained mask. A total of 30 images were used for the experiments. In order to verify the effectiveness of the proposed method, two other texture maps, namely, the maps created from the standard deviation filtering and the range filtering, were used for comparison. As a result, the proposed method using the entropy map was able to appropriately remove the unnecessary regions. In addition, this method was able to remove the markers present in the image, but the other two methods could not. The experimental results have revealed that our proposed method is a highly generalizable and useful algorithm. We believe that this method might act an important role to enhance the performance of AI-CAD systems for chest X-ray images.</span>
基金Key R&D Projects in Hebei Province(22370301D)Scientific Research Foundation of Hebei University for Distinguished Young Scholars(521100221081)Scientific Research Foundation of Colleges and Universities in Hebei Province(QN2022107)。
文摘Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is proposed.Methods To obtain refined features of retinal blood vessels,three cascade connected UNet networks are employed.To deal with the problem of difference between the parts of encoder and decoder,in MF2ResU-Net,shortcut connections are used to combine the encoder and decoder layers in the blocks.To refine the feature of segmentation,atrous spatial pyramid pooling(ASPP)is embedded to achieve multi-scale features for the final segmentation networks.Results The MF2ResU-Net was superior to the existing methods on the criteria of sensitivity(Sen),specificity(Spe),accuracy(ACC),and area under curve(AUC),the values of which are 0.8013 and 0.8102,0.9842 and 0.9809,0.9700 and 0.9776,and 0.9797 and 0.9837,respectively for DRIVE and CHASE DB1.The results of experiments demonstrated the effectiveness and robustness of the model in the segmentation of complex curvature and small blood vessels.Conclusion Based on residual connections and multi-feature fusion,the proposed method can obtain accurate segmentation of retinal blood vessels by refining the segmentation features,which can provide another diagnosis method for computer-aided Chinese medical diagnosis.
文摘A novel stepwise thresholding method for fuzzy image segmentation is proposed. Unlike the published iterative or recursive thresholding mehtods, this method segments regions into sub-regions iteratively by increasing threshold value in a stepwise manner, based on a preset intensity homogeneity criteria. The method is particularly suited to segmentation of the laser scanning confocal microscopy (LSCM) images, computerised tomography (CT) images, magnetic resonance (MR) images, fingerprint images, etc. The method has been tested on some typical fuzzy image data sets. In this paper, the novel stepwise thresholding is first addressed. Next a new method of region labelling for region extraction is introduced. Then the design of intensity homogeneity segmentation criteria is presented. Some examples of the experiment results of fuzzy image segmentation by the method are given at the end.
文摘目的:采用深度学习方法,通过人在回路的方式进行迭代式标注-训练,建立垂体分割模型,实现垂体体积人工智能(AI)测量。方法:将1285例颅脑3D T 1WI图像按5~15岁、16~25岁、26~50岁、51~70岁年龄段分组,每个年龄组随机选择80例,分成4批次进行试验。初始每组选择3例图像进行人工预标注神经垂体和腺垂体,输入计算机进行学习,获取初始模型。应用模型对一批数据进行分割,获得分割后的神经垂体、腺垂体与垂体总体积数据,将分割结果进行人工校准,获得校准后相对应的体积数据作为金标准。用前一组校准后的分割图像进行计算机迭代式学习优化模型,再用优化后模型对新一组图像分割与校准,重复上述过程,最终将校准前后差异没有统计学意义的数据认定深度学习建模成功。数据采用配对t检验、Dice和Spearman相关性分析进行统计。结果:从第2批次开始,除5~15岁年龄段外,其它年龄段神经垂体体积在校准前后的差异没有统计学意义,腺垂体与垂体总体积的差异有统计学意义(P<0.05)。第4批次,各年龄段神经垂体、腺垂体与垂体总体积在校准前后的差异均无统计学意义(P=0.137~0.928),Dice值大于0.941,Spearman相关系数大于0.969。结论:通过迭代式训练进行深度学习建模可构建垂体分割模型,实现垂体体积AI自动测量。
文摘针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。