[Objective] The paper was to study wind-break and sand-fixation functions of forage plants in desert area. [Method]Based on the survey data of four major wind-break and sand-fixation plants( Haloxylon ammondendron,Art...[Objective] The paper was to study wind-break and sand-fixation functions of forage plants in desert area. [Method]Based on the survey data of four major wind-break and sand-fixation plants( Haloxylon ammondendron,Artemisia arenaria,Nitraria tangutorum and Ephedra przewalskii) in Minqin desert area,the longitudinal section area and the sandpile volume of an individual plant and per unit area were calculated. The wind-break and sand-fixation functions of four major plant communities were comparatively analyzed. [Result] The wind-break functions of an individual plant( cluster) successively were N. tangutorum > H. ammondendron > A. arenaria and E. przewalskii; the sand-fixation functions of an individual plant( cluster) successively were N. tangutorum > E. przewalskii; the wind-break functions per unit area successively were A. arenaria > H. ammondendron > N. tangutorum > E. przewalskii; the sand-fixation functions per unit area were N. tangutorum > E. przewalskii; the wind-break and sand-fixation function per unit area were N. tangutorum > A. arenaria > H. ammondendron >E. przewalskii.[Conclusion]A. arenaria can be selected for only wind-break,and N. tangutorum can be chosen for only sand-fixation. If given consideration to both,N. tangutorum and A. arenaria must be selected.展开更多
There are 0.78 million hm2 of sand dune areas in Jilin Province. The effects of two types of windbreaks. shelterbelts and small areas ofartdicial forests, on sand dune fixation were discussed. The temperature, humidit...There are 0.78 million hm2 of sand dune areas in Jilin Province. The effects of two types of windbreaks. shelterbelts and small areas ofartdicial forests, on sand dune fixation were discussed. The temperature, humidity and reduced situation of wind speed in the two types of windbreaks wer systematically studied.展开更多
A novel hydrophilic polyurethane (abbreviated as W-OH) was developed and applied as a sustainable sand-fixing material. This paper on the chemical sand fixation mechanism of W-OH discusses the adhesive force between t...A novel hydrophilic polyurethane (abbreviated as W-OH) was developed and applied as a sustainable sand-fixing material. This paper on the chemical sand fixation mechanism of W-OH discusses the adhesive force between the W-OH solid and sand particles. The solidification mechanism was investigated and the solidifying time was tested. And then the thickness and porosity of the W-OH sand-fixing layer were investigated. By scanning electron microscopy (SEM), the microstructure of the W-OH sand-fixing layer was examined. The hardness and compressive stress of the sand-fixing specimens were studied at W-OH different concentrations. Finally, the resistance to wind erosion of the W-OH sand-fixing layer was investigated by a wind tunnel test. The results demonstrated that the W-OH aqueous solution had an excellent affinity for water on the surface of the sand particles, and the adhesive force between the W-OH solid and sand was primarily hydrogen bonding, covalent bonds and physical absorption, such as Van Der Waals forces. W-OH is a prepolymer of hydrophilic polyurethane containing groups of -NCO that can quickly react with water and other groups containing active H. The W-OH aqueous solution solidified in the range of 2 min to 15 min. The solidifying time decreased with increasing temperature and concentration. Before solidifying it had a good permeability of sand and the formed sand-fixing layer had a thickness of 8 - 35 mm and a porosity of 25% - 8% at a spraying concentration of 2 - 10 L/m2. The hardness index of the sand-fixing layer was in the range of 21 mm to 28 mm and compressive stress was in the range from 0.21 MPa mm to 1.27 MPa, both of which increased linearly with W-OH concentration. Sand treated by over 3% W-OH concentrations showed excellent resistance to wind/sand erosion of more than 25 m/s.展开更多
This study was carried out at Sand Dunes Stabilization Researches Station in Baiji district (230 km north of Baghdad, Iraq) to evaluate the effects of local soil conditioners manufactured from oil derivatives and plan...This study was carried out at Sand Dunes Stabilization Researches Station in Baiji district (230 km north of Baghdad, Iraq) to evaluate the effects of local soil conditioners manufactured from oil derivatives and plant residuals on sand dunes fixation as the first step for sand dunes stabilization. The results indicate that the fuel oil has the first place in improving wind erosion parameters in the study area, such as increasing mean weight diameter, dry aggregates percentage, the needed time for complete disaggregation by dry sieving, and decreasing the disaggregation rates. Bitumen emulsion occupies the second place, while the plant residuals occupies the third place and has slight effects on the studied parameters. Effects of conditioners on natural vegetation cover are negative in oil derivatives treatments, while positive in plants residuals treatments.展开更多
基金Supported by National Natural Science Foundation of China(41671528,41661064)
文摘[Objective] The paper was to study wind-break and sand-fixation functions of forage plants in desert area. [Method]Based on the survey data of four major wind-break and sand-fixation plants( Haloxylon ammondendron,Artemisia arenaria,Nitraria tangutorum and Ephedra przewalskii) in Minqin desert area,the longitudinal section area and the sandpile volume of an individual plant and per unit area were calculated. The wind-break and sand-fixation functions of four major plant communities were comparatively analyzed. [Result] The wind-break functions of an individual plant( cluster) successively were N. tangutorum > H. ammondendron > A. arenaria and E. przewalskii; the sand-fixation functions of an individual plant( cluster) successively were N. tangutorum > E. przewalskii; the wind-break functions per unit area successively were A. arenaria > H. ammondendron > N. tangutorum > E. przewalskii; the sand-fixation functions per unit area were N. tangutorum > E. przewalskii; the wind-break and sand-fixation function per unit area were N. tangutorum > A. arenaria > H. ammondendron >E. przewalskii.[Conclusion]A. arenaria can be selected for only wind-break,and N. tangutorum can be chosen for only sand-fixation. If given consideration to both,N. tangutorum and A. arenaria must be selected.
文摘There are 0.78 million hm2 of sand dune areas in Jilin Province. The effects of two types of windbreaks. shelterbelts and small areas ofartdicial forests, on sand dune fixation were discussed. The temperature, humidity and reduced situation of wind speed in the two types of windbreaks wer systematically studied.
文摘A novel hydrophilic polyurethane (abbreviated as W-OH) was developed and applied as a sustainable sand-fixing material. This paper on the chemical sand fixation mechanism of W-OH discusses the adhesive force between the W-OH solid and sand particles. The solidification mechanism was investigated and the solidifying time was tested. And then the thickness and porosity of the W-OH sand-fixing layer were investigated. By scanning electron microscopy (SEM), the microstructure of the W-OH sand-fixing layer was examined. The hardness and compressive stress of the sand-fixing specimens were studied at W-OH different concentrations. Finally, the resistance to wind erosion of the W-OH sand-fixing layer was investigated by a wind tunnel test. The results demonstrated that the W-OH aqueous solution had an excellent affinity for water on the surface of the sand particles, and the adhesive force between the W-OH solid and sand was primarily hydrogen bonding, covalent bonds and physical absorption, such as Van Der Waals forces. W-OH is a prepolymer of hydrophilic polyurethane containing groups of -NCO that can quickly react with water and other groups containing active H. The W-OH aqueous solution solidified in the range of 2 min to 15 min. The solidifying time decreased with increasing temperature and concentration. Before solidifying it had a good permeability of sand and the formed sand-fixing layer had a thickness of 8 - 35 mm and a porosity of 25% - 8% at a spraying concentration of 2 - 10 L/m2. The hardness index of the sand-fixing layer was in the range of 21 mm to 28 mm and compressive stress was in the range from 0.21 MPa mm to 1.27 MPa, both of which increased linearly with W-OH concentration. Sand treated by over 3% W-OH concentrations showed excellent resistance to wind/sand erosion of more than 25 m/s.
文摘This study was carried out at Sand Dunes Stabilization Researches Station in Baiji district (230 km north of Baghdad, Iraq) to evaluate the effects of local soil conditioners manufactured from oil derivatives and plant residuals on sand dunes fixation as the first step for sand dunes stabilization. The results indicate that the fuel oil has the first place in improving wind erosion parameters in the study area, such as increasing mean weight diameter, dry aggregates percentage, the needed time for complete disaggregation by dry sieving, and decreasing the disaggregation rates. Bitumen emulsion occupies the second place, while the plant residuals occupies the third place and has slight effects on the studied parameters. Effects of conditioners on natural vegetation cover are negative in oil derivatives treatments, while positive in plants residuals treatments.