Medical image compression is one of the essential technologies to facilitate real-time medical data transmission in remote healthcare applications.In general,image compression can introduce undesired coding artifacts,...Medical image compression is one of the essential technologies to facilitate real-time medical data transmission in remote healthcare applications.In general,image compression can introduce undesired coding artifacts,such as blocking artifacts and ringing effects.In this paper,we proposed a Multi-Scale Feature Attention Network(MSFAN)with two essential parts,which are multi-scale feature extraction layers and feature attention layers to efficiently remove coding artifacts of compressed medical images.Multiscale feature extraction layers have four Feature Extraction(FE)blocks.Each FE block consists of five convolution layers and one CA block for weighted skip connection.In order to optimize the proposed network architectures,a variety of verification tests were conducted using validation dataset.We used Computer Vision Center-Clinic Database(CVC-ClinicDB)consisting of 612 colonoscopy medical images to evaluate the enhancement of image restoration.The proposedMSFAN can achieve improved PSNR gains as high as 0.25 and 0.24 dB on average compared to DnCNNand DCSC,respectively.展开更多
Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a proje...Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a projectiondomain algorithm to reduce the metal artifacts.In this algorithm,the unknowns are the metal-affected projections,while the objective function is set up in the image domain.The data fidelity term is not utilized in the objective function.The objective function of the proposed algorithm consists of two terms:the total variation of the metalremoved image and the energy of the negative-valued pixels in the image.After the metal-affected projections are modified,the final image is reconstructed via the filtered backprojection algorithm.The feasibility of the proposed algorithm has been verified by real experimental data.展开更多
Streaking artifacts on computed tomography (CT) images are caused by high density materials such as hip prosthesis, surgical clips and dental fillings. The artifacts can lead to compromised clinical outcome due to the...Streaking artifacts on computed tomography (CT) images are caused by high density materials such as hip prosthesis, surgical clips and dental fillings. The artifacts can lead to compromised clinical outcome due to the inability to differentiate tumor volume and the uncertainties in dose calculation. The goals of our study are to evaluate how GE’s smart metal artifact reduction (MAR) algorithm impacts image quality on phantoms and dosimetry on head and neck patients with dental fillings and pelvic patients with hip prosthesis. Treatment plans calculated on the MAR and non-MAR datasets with the same beam arrangements and fluence are compared. Dose differences between the MAR and non-MAR datasets are not significant. However, substantial reductions of metal artifacts are observed when MAR algorithm is applied. Planning on the MAR dataset is recommended since it improves image quality and CT number accuracy. It also negates the need to contour the artifacts and override the density which can be time consuming.展开更多
An algorithm for blocking artifacts reduction in DCT domain for block-based image coding was developed. The algorithm is based on the projection onto convex set (POCS) theory. Due to the fact that the DCT characteri...An algorithm for blocking artifacts reduction in DCT domain for block-based image coding was developed. The algorithm is based on the projection onto convex set (POCS) theory. Due to the fact that the DCT characteristics of shifted blocks are different caused by the blocking artifacts, a novel smoothness constraint set and the corresponding projection operator were proposed to reduce the blocking artifacts by discarding the undesired high frequency coefficients in the shifted DCT blocks. The experimental resuhs show that the propo,sed algorithm outperforms the conventional algorithms in terms of objective quality, subiective quality, and convergence property.展开更多
This paper proposes a maximum a posteriori (MAP) based blocking artifact reduction algorithm for discrete cosine transform (DCT) domain distributed video coding, in which the SI and the initial reconstructed Wyner...This paper proposes a maximum a posteriori (MAP) based blocking artifact reduction algorithm for discrete cosine transform (DCT) domain distributed video coding, in which the SI and the initial reconstructed Wyner-Ziv (WZ) frame are utilized to further estimate the original WZ frame. Though the MAP estimate improves quality of the artifact region, it also leads to over-smoothness and decreases quality of the non-artifact region. To overcome this problem, a criterion is presented to discriminate the artifact and the non-artifact region in the initial reconstructed WZ frame, and only the artifact region is updated with the MAP estimate. Simulation results show that the proposed algorithm provides obvious improvement in terms of both objective and subjective evaluations.展开更多
When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements...When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements from their true values.One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values.Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image.We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result.This paper proposes an iterative algorithm to optimize this objective function,and the unknowns are the metal affected projections.Once the metal affected projections are estimated,the filtered backprojection algorithm is used to reconstruct the final image.This paper applies the proposed algorithm to some airport bag CT scans.The bags all contain unknown metallic objects.The metal artifacts are effectively reduced by the proposed algorithm.展开更多
目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)...目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)和噪声(SD),以计算椎旁肌和椎管的信噪比。两名放射科医师独立评价图像质量和伪影减少程度。结果 与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像显著降低低密度伪影及高密度伪影。与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像椎旁肌(34.6±17.0HU vs. 26.1±13.5HU及34.6±17.0HU vs. 27.0±14.2)和椎管(102.5±60.1HU vs. 72.1±39.3HU及102.5±60.1HU vs. 60.1±38.0HU, P 均<0.05)的噪声伪影减少。观察者间评价主观图像质量的一致性良好,ICC=0.74。在主观图像质量评价中,金属伪影去除算法和高keV虚拟单能图像上表现出伪影减少分别为44/56例(78.6%)、48/56例(85.7%)。结论 能谱CT金属伪影去除算法和高keV虚拟单能图像重建上客观及主观伪像均减少,金属伪影去除算法联合虚拟单能图像的组合可能有希望进一步减少伪影。展开更多
基金This work was supported by Kyungnam University Foundation Grant,2020.
文摘Medical image compression is one of the essential technologies to facilitate real-time medical data transmission in remote healthcare applications.In general,image compression can introduce undesired coding artifacts,such as blocking artifacts and ringing effects.In this paper,we proposed a Multi-Scale Feature Attention Network(MSFAN)with two essential parts,which are multi-scale feature extraction layers and feature attention layers to efficiently remove coding artifacts of compressed medical images.Multiscale feature extraction layers have four Feature Extraction(FE)blocks.Each FE block consists of five convolution layers and one CA block for weighted skip connection.In order to optimize the proposed network architectures,a variety of verification tests were conducted using validation dataset.We used Computer Vision Center-Clinic Database(CVC-ClinicDB)consisting of 612 colonoscopy medical images to evaluate the enhancement of image restoration.The proposedMSFAN can achieve improved PSNR gains as high as 0.25 and 0.24 dB on average compared to DnCNNand DCSC,respectively.
基金This research is partially supported by NIH,No.R15EB024283.
文摘Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a projectiondomain algorithm to reduce the metal artifacts.In this algorithm,the unknowns are the metal-affected projections,while the objective function is set up in the image domain.The data fidelity term is not utilized in the objective function.The objective function of the proposed algorithm consists of two terms:the total variation of the metalremoved image and the energy of the negative-valued pixels in the image.After the metal-affected projections are modified,the final image is reconstructed via the filtered backprojection algorithm.The feasibility of the proposed algorithm has been verified by real experimental data.
文摘Streaking artifacts on computed tomography (CT) images are caused by high density materials such as hip prosthesis, surgical clips and dental fillings. The artifacts can lead to compromised clinical outcome due to the inability to differentiate tumor volume and the uncertainties in dose calculation. The goals of our study are to evaluate how GE’s smart metal artifact reduction (MAR) algorithm impacts image quality on phantoms and dosimetry on head and neck patients with dental fillings and pelvic patients with hip prosthesis. Treatment plans calculated on the MAR and non-MAR datasets with the same beam arrangements and fluence are compared. Dose differences between the MAR and non-MAR datasets are not significant. However, substantial reductions of metal artifacts are observed when MAR algorithm is applied. Planning on the MAR dataset is recommended since it improves image quality and CT number accuracy. It also negates the need to contour the artifacts and override the density which can be time consuming.
文摘An algorithm for blocking artifacts reduction in DCT domain for block-based image coding was developed. The algorithm is based on the projection onto convex set (POCS) theory. Due to the fact that the DCT characteristics of shifted blocks are different caused by the blocking artifacts, a novel smoothness constraint set and the corresponding projection operator were proposed to reduce the blocking artifacts by discarding the undesired high frequency coefficients in the shifted DCT blocks. The experimental resuhs show that the propo,sed algorithm outperforms the conventional algorithms in terms of objective quality, subiective quality, and convergence property.
基金Supported by the National Natural Science Foundation of China (No.60672088, No.60736043) the National Basic Research Development Program of China (2009CB320905)
文摘This paper proposes a maximum a posteriori (MAP) based blocking artifact reduction algorithm for discrete cosine transform (DCT) domain distributed video coding, in which the SI and the initial reconstructed Wyner-Ziv (WZ) frame are utilized to further estimate the original WZ frame. Though the MAP estimate improves quality of the artifact region, it also leads to over-smoothness and decreases quality of the non-artifact region. To overcome this problem, a criterion is presented to discriminate the artifact and the non-artifact region in the initial reconstructed WZ frame, and only the artifact region is updated with the MAP estimate. Simulation results show that the proposed algorithm provides obvious improvement in terms of both objective and subjective evaluations.
基金This research is partially supported by NIH,No.R15EB024283.
文摘When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements from their true values.One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values.Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image.We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result.This paper proposes an iterative algorithm to optimize this objective function,and the unknowns are the metal affected projections.Once the metal affected projections are estimated,the filtered backprojection algorithm is used to reconstruct the final image.This paper applies the proposed algorithm to some airport bag CT scans.The bags all contain unknown metallic objects.The metal artifacts are effectively reduced by the proposed algorithm.
文摘目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)和噪声(SD),以计算椎旁肌和椎管的信噪比。两名放射科医师独立评价图像质量和伪影减少程度。结果 与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像显著降低低密度伪影及高密度伪影。与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像椎旁肌(34.6±17.0HU vs. 26.1±13.5HU及34.6±17.0HU vs. 27.0±14.2)和椎管(102.5±60.1HU vs. 72.1±39.3HU及102.5±60.1HU vs. 60.1±38.0HU, P 均<0.05)的噪声伪影减少。观察者间评价主观图像质量的一致性良好,ICC=0.74。在主观图像质量评价中,金属伪影去除算法和高keV虚拟单能图像上表现出伪影减少分别为44/56例(78.6%)、48/56例(85.7%)。结论 能谱CT金属伪影去除算法和高keV虚拟单能图像重建上客观及主观伪像均减少,金属伪影去除算法联合虚拟单能图像的组合可能有希望进一步减少伪影。