The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.Howeve...The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.However,these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms.Convolutional Neural Networks(CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices.However,their performances is not ideal in case of distinguishing between individual devices of the same model,because cameras of the same model typically use the same optical lens,image sensor,and image processing algorithms,that result in minimal overall differences.In this paper,we propose a camera forensics algorithm based on multi-scale feature fusion to address these issues.The proposed algorithm extracts different local features from feature maps of different scales and then fuses them to obtain a comprehensive feature representation.This representation is then fed into a subsequent camera fingerprint classification network.Building upon the Swin-T network,we utilize Transformer Blocks and Graph Convolutional Network(GCN)modules to fuse multi-scale features from different stages of the backbone network.Furthermore,we conduct experiments on established datasets to demonstrate the feasibility and effectiveness of the proposed approach.展开更多
Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-l...Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-life of ^(99m)Tc (T_(1/2)=6 h)makes it difficult to store or transport.Thus,the production of ^(99m)Tc is tied to its parent radionuclide ^(99)Mo (T_(1/2)=66 h).The major production paths are based on accelerators and research reactors.The reactor process presents the potential for nuclear proliferation owing to its use of highly enriched uranium (HEU).Accelerator-based methods tend to use deuterium–tritium(D–T) neutron sources but are hindered by the high cost of tritium and its challenging operation.In this study,a new ^(99)Mo production design was developed based on a deuterium–deuterium (D–D) gas dynamic trap fusion neutron source (GDT-FNS) and a subcritical blanket system (SBS) assembly with a low-enriched uranium (LEU) solution.GDT-FNS can provide a relatively high-neutron intensity,which is one of the advantages of ^(99)Mo production.We provide a Monte Carlo-based neutronics analysis covering the calculation of the subcritical multiplication factor (k_(s)) of the SBS,optimization design for the reflector,shielding layer,and ^(99)Mo production capacity.Other calculations,including the neutron flux and nuclear heating distributions,are also provided for an overall evaluation of the production system.The results demonstrated that the SBS meets the nuclear critical safety design requirement (k_(s)<0.97) and maintained a high ^(99)Mo production capacity.The proposed system can generate approximately 157 Ci ^(99)Mo for a stable 24 h operation with a neutron intensity of 1×10^(14) n/s,which can meet 50%of China’s demand in 2025.展开更多
Effect of various spatial and energy distributions of fusion neutron sourceon the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated bymeans of the 3-D Monte Carlo code MCNP. A real...Effect of various spatial and energy distributions of fusion neutron sourceon the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated bymeans of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based onthe accurate representation of the spatial distribution and energy spectrum of fusion neutrons tosolve the complicated problem of tokamak fusion neutron source modelling. The results show thatthose simplified source models will introduce significant uncertainties. For accurate estimation ofthe key nuclear responses of the tokamak design and analyses, the use of the realistic source isrecommended. In addition, the accumulation of tritium produced during D-D plasma operation should becarefully considered.展开更多
This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early applic...This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.展开更多
The proposed heavy ion inertial fusion(HIF)scenarios require ampere class low charge state ion beams of heavy species.The laser ion source(LIS)is recognized as one of the promising candidates of ion beam providers,sin...The proposed heavy ion inertial fusion(HIF)scenarios require ampere class low charge state ion beams of heavy species.The laser ion source(LIS)is recognized as one of the promising candidates of ion beam providers,since it can deliver high brightness heavy ion beams to accelerators.The design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source.In this article,we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators:radio frequency(RF)high quality factor cavity type and non-resonant induction core type.We believe that a properly designed LIS would satisfy the requirements of both types,while some issues need to be verified experimentally.展开更多
To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The p...To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.展开更多
The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flo...The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both sp...We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking adva...In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking advantage of AI by integrating it into their day-to-day operation.Meanwhile,seven billion people worldwide shape the world’s energy system and directly impact the fundamental drivers of energy,both renewable and non-renewable sources,to meet the demand for electricity from them.These energy sources can be reached from nature such as solar,wind,etc.,and human-made such as NPPs(nuclear power plants)in the form of either fission as an old technology since the Manhattan project and in the near future as fusion in the form of magnetic or inertial confinements.Meanwhile,AI controlling nuclear reactors are about to happen.The basic idea is to apply AI with its two subset components as ML(machine learning),and DL(deep learning)techniques to go through the mountains of data that come from a reactor,spot patterns in it,and calling them to the unit’s human attention operators is not invadable either.Designers of such nuclear reactors will combine simulation and real-world data,comparing scenarios from each to develop“confidence[in]what they can predict and what is the range of uncertainty of their prediction”.Adding that,in the end,the operator will make the final decisions in order to keep these power plants safe while they are in operation and how to secure them against cyber-attack natural or human-made disasters.In this short communication article,we would like to see how we can prove some of these concepts;then a NPP manufacturer can pick it up and use it in their designs of a new generation of these reactors.展开更多
The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundan...The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundancy and extra information acquired. The fusion of redundant information can reduce the overall uncertainty and thus helps to provide information specified more precisely. Several sensors providing redundant information can also be used to increase reliability in the case of error, omission or failure of sensors. The combination operators are exponential and are more complex in terms of calculation;the Dempster-Shafer operator is exponential for more than three (3) information sources?[1] [2]. Our work focuses on the definition of another formulation of this operation, and puts it in a matrix form to illuminate the computational complexity, more precision guaranty and a minimal execution time. We propose to use each information source in a form of a matrix, which contains 0 value in lines that do not contain the masses (m(Ai) = 0) or once m(Ai) is not null (m(Ai) ≠ 0). The use of this expressed matrix attempts to ameliorate Dempster-Shafer operator via initialing either a criterion or criteria sources’ solution, increasing the efficiency of the Dempster-Shafer operator and facilitates the combination among the sources. We evaluate our approach by conducting a case study for showing the effectiveness of this matrix.展开更多
The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator desi...The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator design, with linear dimensions increased by a factor of 1.5 is taken for the magnetic system. Plasma parameters and the deuterium-tritium (DT) mixture fusion power are calculated using the space-time numerical code under the assumption of the neoclassical transport in the ambipolarity regime. Using the 10 MW plasma heating sources, it is possible to obtain the DT fusion power of one-to-two tens MW.展开更多
Low energy nuclear reactions are possible in condensed matter because of image forces. They result from induced charges at the surface of metals or very polarizable media. The height and width of the Coulomb barrier i...Low energy nuclear reactions are possible in condensed matter because of image forces. They result from induced charges at the surface of metals or very polarizable media. The height and width of the Coulomb barrier in free space can thus be reduced. Nuclear fusion requires also the formation of a compound nucleus in one of its excited states, but two deuterons yield an α particle that has 2 excited states. They are respectively accessible at high or low energies. Since the reduction of the Coulomb barrier depends on the local curvature of the interface, cold fusion becomes autocatalytic, but heat production is controllable. Even microbes, plants and animals can produce transmutations. They are also due to image forces. This solves a basic problem in nuclear physics and there are possible applications: facilitated synthesis of superheavy elements and development of a new type of energy sources. They are moderate, but safe.展开更多
基金This work was funded by the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.However,these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms.Convolutional Neural Networks(CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices.However,their performances is not ideal in case of distinguishing between individual devices of the same model,because cameras of the same model typically use the same optical lens,image sensor,and image processing algorithms,that result in minimal overall differences.In this paper,we propose a camera forensics algorithm based on multi-scale feature fusion to address these issues.The proposed algorithm extracts different local features from feature maps of different scales and then fuses them to obtain a comprehensive feature representation.This representation is then fed into a subsequent camera fingerprint classification network.Building upon the Swin-T network,we utilize Transformer Blocks and Graph Convolutional Network(GCN)modules to fuse multi-scale features from different stages of the backbone network.Furthermore,we conduct experiments on established datasets to demonstrate the feasibility and effectiveness of the proposed approach.
基金supported by Anhui Provincial Key R&D Program (202104g0102007)Hefei Municipal Natural Science Foundation (2022011)+2 种基金Collaborative Innovation Program of Hefei Science CenterChinese Academy of Sciences(2022HSC CIP024)International Partnership Program of Chinese Academy of Sciences (116134KYSB20200001)。
文摘Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-life of ^(99m)Tc (T_(1/2)=6 h)makes it difficult to store or transport.Thus,the production of ^(99m)Tc is tied to its parent radionuclide ^(99)Mo (T_(1/2)=66 h).The major production paths are based on accelerators and research reactors.The reactor process presents the potential for nuclear proliferation owing to its use of highly enriched uranium (HEU).Accelerator-based methods tend to use deuterium–tritium(D–T) neutron sources but are hindered by the high cost of tritium and its challenging operation.In this study,a new ^(99)Mo production design was developed based on a deuterium–deuterium (D–D) gas dynamic trap fusion neutron source (GDT-FNS) and a subcritical blanket system (SBS) assembly with a low-enriched uranium (LEU) solution.GDT-FNS can provide a relatively high-neutron intensity,which is one of the advantages of ^(99)Mo production.We provide a Monte Carlo-based neutronics analysis covering the calculation of the subcritical multiplication factor (k_(s)) of the SBS,optimization design for the reflector,shielding layer,and ^(99)Mo production capacity.Other calculations,including the neutron flux and nuclear heating distributions,are also provided for an overall evaluation of the production system.The results demonstrated that the SBS meets the nuclear critical safety design requirement (k_(s)<0.97) and maintained a high ^(99)Mo production capacity.The proposed system can generate approximately 157 Ci ^(99)Mo for a stable 24 h operation with a neutron intensity of 1×10^(14) n/s,which can meet 50%of China’s demand in 2025.
基金The project supported partly by the National Science Foundation of Anhui Province (No. 0104360)
文摘Effect of various spatial and energy distributions of fusion neutron sourceon the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated bymeans of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based onthe accurate representation of the spatial distribution and energy spectrum of fusion neutrons tosolve the complicated problem of tokamak fusion neutron source modelling. The results show thatthose simplified source models will introduce significant uncertainties. For accurate estimation ofthe key nuclear responses of the tokamak design and analyses, the use of the realistic source isrecommended. In addition, the accumulation of tritium produced during D-D plasma operation should becarefully considered.
文摘This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.
基金This work was performed under contract DE-AC02-98CH1-886 with the auspices of the DoE and National Aeronautics and Space Administration.
文摘The proposed heavy ion inertial fusion(HIF)scenarios require ampere class low charge state ion beams of heavy species.The laser ion source(LIS)is recognized as one of the promising candidates of ion beam providers,since it can deliver high brightness heavy ion beams to accelerators.The design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source.In this article,we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators:radio frequency(RF)high quality factor cavity type and non-resonant induction core type.We believe that a properly designed LIS would satisfy the requirements of both types,while some issues need to be verified experimentally.
基金supported by the IAEA Coordinate Research Project F1.30.15 Conceptual Development of Steady-State Compact Fusion Neutron Sources,the Knowledge Innovation Projects of Chinese Academy of Sciences(No.KJCX2-YW-N37)National Magnetic Confinement Fusion Science Program of China(No.2011GB114004)
文摘To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.
基金support provided by the National Natural Sciences Foundation of China(No.41771419)Student Research Training Program of Southwest Jiaotong University(No.191510,No.182117)。
文摘The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.
基金The National Natural Science Foundation of China under contract No.61671481the Qingdao Applied Fundamental Research under contract No.16-5-1-11-jchthe Fundamental Research Funds for Central Universities under contract No.18CX05014A
文摘We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
文摘In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking advantage of AI by integrating it into their day-to-day operation.Meanwhile,seven billion people worldwide shape the world’s energy system and directly impact the fundamental drivers of energy,both renewable and non-renewable sources,to meet the demand for electricity from them.These energy sources can be reached from nature such as solar,wind,etc.,and human-made such as NPPs(nuclear power plants)in the form of either fission as an old technology since the Manhattan project and in the near future as fusion in the form of magnetic or inertial confinements.Meanwhile,AI controlling nuclear reactors are about to happen.The basic idea is to apply AI with its two subset components as ML(machine learning),and DL(deep learning)techniques to go through the mountains of data that come from a reactor,spot patterns in it,and calling them to the unit’s human attention operators is not invadable either.Designers of such nuclear reactors will combine simulation and real-world data,comparing scenarios from each to develop“confidence[in]what they can predict and what is the range of uncertainty of their prediction”.Adding that,in the end,the operator will make the final decisions in order to keep these power plants safe while they are in operation and how to secure them against cyber-attack natural or human-made disasters.In this short communication article,we would like to see how we can prove some of these concepts;then a NPP manufacturer can pick it up and use it in their designs of a new generation of these reactors.
文摘The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundancy and extra information acquired. The fusion of redundant information can reduce the overall uncertainty and thus helps to provide information specified more precisely. Several sensors providing redundant information can also be used to increase reliability in the case of error, omission or failure of sensors. The combination operators are exponential and are more complex in terms of calculation;the Dempster-Shafer operator is exponential for more than three (3) information sources?[1] [2]. Our work focuses on the definition of another formulation of this operation, and puts it in a matrix form to illuminate the computational complexity, more precision guaranty and a minimal execution time. We propose to use each information source in a form of a matrix, which contains 0 value in lines that do not contain the masses (m(Ai) = 0) or once m(Ai) is not null (m(Ai) ≠ 0). The use of this expressed matrix attempts to ameliorate Dempster-Shafer operator via initialing either a criterion or criteria sources’ solution, increasing the efficiency of the Dempster-Shafer operator and facilitates the combination among the sources. We evaluate our approach by conducting a case study for showing the effectiveness of this matrix.
文摘The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator design, with linear dimensions increased by a factor of 1.5 is taken for the magnetic system. Plasma parameters and the deuterium-tritium (DT) mixture fusion power are calculated using the space-time numerical code under the assumption of the neoclassical transport in the ambipolarity regime. Using the 10 MW plasma heating sources, it is possible to obtain the DT fusion power of one-to-two tens MW.
文摘Low energy nuclear reactions are possible in condensed matter because of image forces. They result from induced charges at the surface of metals or very polarizable media. The height and width of the Coulomb barrier in free space can thus be reduced. Nuclear fusion requires also the formation of a compound nucleus in one of its excited states, but two deuterons yield an α particle that has 2 excited states. They are respectively accessible at high or low energies. Since the reduction of the Coulomb barrier depends on the local curvature of the interface, cold fusion becomes autocatalytic, but heat production is controllable. Even microbes, plants and animals can produce transmutations. They are also due to image forces. This solves a basic problem in nuclear physics and there are possible applications: facilitated synthesis of superheavy elements and development of a new type of energy sources. They are moderate, but safe.