Polarization-independent liquid-crystal(LC)phase modulators can significantly improve the efficiency and reduce the complexity of optical systems.However,achieving good polarization independence for LC phase modulator...Polarization-independent liquid-crystal(LC)phase modulators can significantly improve the efficiency and reduce the complexity of optical systems.However,achieving good polarization independence for LC phase modulators with a simple structure is difficult.A light-controlled azimuth angle(LCAA)process based on the optical rotatory effect of cholesteric liquid crystals(CLC)was developed for fabricating single-layer,multi-microdomain,orthogonally twisted(MMOT)structures.The developed LC phase modulator with a single-layer MMOT structure may have a low polarization dependence with a large phase depth.This device shows good potential for applications in optical communications,wearable devices,and displays.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62175148。
文摘Polarization-independent liquid-crystal(LC)phase modulators can significantly improve the efficiency and reduce the complexity of optical systems.However,achieving good polarization independence for LC phase modulators with a simple structure is difficult.A light-controlled azimuth angle(LCAA)process based on the optical rotatory effect of cholesteric liquid crystals(CLC)was developed for fabricating single-layer,multi-microdomain,orthogonally twisted(MMOT)structures.The developed LC phase modulator with a single-layer MMOT structure may have a low polarization dependence with a large phase depth.This device shows good potential for applications in optical communications,wearable devices,and displays.