Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ...Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.展开更多
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear...Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.展开更多
The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic ada...The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.展开更多
Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly...Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both cus...Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.展开更多
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe...For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.展开更多
With the emergence and development of social networks,people can stay in touch with friends,family,and colleagues more quickly and conveniently,regardless of their location.This ubiquitous digital internet environment...With the emergence and development of social networks,people can stay in touch with friends,family,and colleagues more quickly and conveniently,regardless of their location.This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy.Due to the complexity and subtlety of sensitive information,traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data,thus weakening the deep connections between text and images.In this context,this paper adopts the CLIP model as a modality discriminator.By using comparative learning between sensitive image descriptions and images,the similarity between the images and the sensitive descriptions is obtained to determine whether the images contain sensitive information.This provides the basis for identifying sensitive information using different modalities.Specifically,if the original data does not contain sensitive information,only single-modality text-sensitive information identification is performed;if the original data contains sensitive information,multimodality sensitive information identification is conducted.This approach allows for differentiated processing of each piece of data,thereby achieving more accurate sensitive information identification.The aforementioned modality discriminator can address the limitations of existing sensitive information identification technologies,making the identification of sensitive information from the original data more appropriate and precise.展开更多
Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and ...Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and malicious detection,lacking the malicious Power Shell families classification and behavior analysis.Moreover,the state-of-the-art methods fail to capture fine-grained features and semantic relationships,resulting in low robustness and accuracy.To this end,we propose Power Detector,a novel malicious Power Shell script detector based on multimodal semantic fusion and deep learning.Specifically,we design four feature extraction methods to extract key features from character,token,abstract syntax tree(AST),and semantic knowledge graph.Then,we intelligently design four embeddings(i.e.,Char2Vec,Token2Vec,AST2Vec,and Rela2Vec) and construct a multi-modal fusion algorithm to concatenate feature vectors from different views.Finally,we propose a combined model based on transformer and CNN-Bi LSTM to implement Power Shell family detection.Our experiments with five types of Power Shell attacks show that PowerDetector can accurately detect various obfuscated and stealth PowerShell scripts,with a 0.9402 precision,a 0.9358 recall,and a 0.9374 F1-score.Furthermore,through singlemodal and multi-modal comparison experiments,we demonstrate that PowerDetector’s multi-modal embedding and deep learning model can achieve better accuracy and even identify more unknown attacks.展开更多
Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event eleme...Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.展开更多
The learning status of learners directly affects the quality of learning.Compared with offline teachers,it is difficult for online teachers to capture the learning status of students in the whole class,and it is even ...The learning status of learners directly affects the quality of learning.Compared with offline teachers,it is difficult for online teachers to capture the learning status of students in the whole class,and it is even more difficult to continue to pay attention to studentswhile teaching.Therefore,this paper proposes an online learning state analysis model based on a convolutional neural network and multi-dimensional information fusion.Specifically,a facial expression recognition model and an eye state recognition model are constructed to detect students’emotions and fatigue,respectively.By integrating the detected data with the homework test score data after online learning,an analysis model of students’online learning status is constructed.According to the PAD model,the learning state is expressed as three dimensions of students’understanding,engagement and interest,and then analyzed from multiple perspectives.Finally,the proposed model is applied to actual teaching,and procedural analysis of 5 different types of online classroom learners is carried out,and the validity of the model is verified by comparing with the results of the manual analysis.展开更多
In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resoluti...In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resolution,single viewpoint,and occlusion.Different from the existing works predicting symmetry from the complete shape,we propose a learning approach for symmetry predic-tion based on a single RGB-D image.Instead of directly predicting the symmetry from incomplete shapes,our method consists of two modules,i.e.,the multi-mod-al feature fusion module and the detection-by-reconstruction module.Firstly,we build a channel-transformer network(CTN)to extract cross-fusion features from the RGB-D as the multi-modal feature fusion module,which helps us aggregate features from the color and the depth separately.Then,our self-reconstruction net-work based on a 3D variational auto-encoder(3D-VAE)takes the global geo-metric features as input,followed by a prediction symmetry network to detect the symmetry.Our experiments are conducted on three public datasets:ShapeNet,YCB,and ScanNet,we demonstrate that our method can produce reliable and accurate results.展开更多
In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an ada...In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an adaptive temporal-spatial information fusion model is proposed.Firstly,an adaptive evaluation correction mechanism is constructed by the evidence distance and Deng entropy,which realizes the credibility discrimination and adaptive correction of the spatial evidence.Secondly,the credibility decay operator is introduced to obtain the dynamic credibility of temporal evidence.Finally,the sequential combination of temporal-spatial evidences is achieved by Shafer’s discount criterion and Dempster’s combination rule.The simulation results show that the proposed method not only considers the dynamic and sequential characteristics of the temporal-spatial evidences com-bination,but also has a strong conflict information processing capability,which provides a new refer-ence for the field of temporal-spatial information fusion.展开更多
Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However,...Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.展开更多
With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much att...With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much attention to heaRthcare robots and rehabilitation robots. To get natural and harmonious communication between the user and a service robot, the information perception/feedback ability, and interaction ability for service robots become more important in many key issues.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The meas...The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.展开更多
This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated naviga...This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated navigation system exist. Based on three sensors'(strapdown system, GPS receiver, Doppler radar) information fusion, a fault-tolerant navigation system is designed with this information fusion filter and two-ellipsoid overlap test. Simulation results show that the design is efficient with the soft-failure of gyro, accelerator, GPS receiver and Doppler radar.展开更多
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve...An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.展开更多
基金funded by the National Natural Science Foundation of China(61991413)the China Postdoctoral Science Foundation(2019M651142)+1 种基金the Natural Science Foundation of Liaoning Province(2021-KF-12-07)the Natural Science Foundations of Liaoning Province(2023-MS-322).
文摘Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.
基金supported by the Natural Science Foundation of Liaoning Province(Grant No.2023-MSBA-070)the National Natural Science Foundation of China(Grant No.62302086).
文摘Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.
基金the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.
基金the Fundamental Research Funds for the Central Universities(GrantNo.IR2021222)received by J.Sthe Future Science and Technology Innovation Team Project of HIT(216506)received by Q.W.
文摘Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
基金Ministry of Higher Education of Malaysia under theResearch GrantLRGS/1/2019/UKM-UKM/5/2 and Princess Nourah bint Abdulrahman University for financing this researcher through Supporting Project Number(PNURSP2024R235),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.
文摘For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.
基金supported by the National Natural Science Foundation of China(No.62302540),with author Fangfang Shan for more information,please visit their website at https://www.nsfc.gov.cn/(accessed on 05 June 2024)Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020),where Fangfang Shan is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/(accessed on 05 June 2024)the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422),and for more information,you can visit https://kjt.henan.gov.cn(accessed on 05 June 2024).
文摘With the emergence and development of social networks,people can stay in touch with friends,family,and colleagues more quickly and conveniently,regardless of their location.This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy.Due to the complexity and subtlety of sensitive information,traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data,thus weakening the deep connections between text and images.In this context,this paper adopts the CLIP model as a modality discriminator.By using comparative learning between sensitive image descriptions and images,the similarity between the images and the sensitive descriptions is obtained to determine whether the images contain sensitive information.This provides the basis for identifying sensitive information using different modalities.Specifically,if the original data does not contain sensitive information,only single-modality text-sensitive information identification is performed;if the original data contains sensitive information,multimodality sensitive information identification is conducted.This approach allows for differentiated processing of each piece of data,thereby achieving more accurate sensitive information identification.The aforementioned modality discriminator can address the limitations of existing sensitive information identification technologies,making the identification of sensitive information from the original data more appropriate and precise.
基金This work was supported by National Natural Science Foundation of China(No.62172308,No.U1626107,No.61972297,No.62172144,and No.62062019).
文摘Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and malicious detection,lacking the malicious Power Shell families classification and behavior analysis.Moreover,the state-of-the-art methods fail to capture fine-grained features and semantic relationships,resulting in low robustness and accuracy.To this end,we propose Power Detector,a novel malicious Power Shell script detector based on multimodal semantic fusion and deep learning.Specifically,we design four feature extraction methods to extract key features from character,token,abstract syntax tree(AST),and semantic knowledge graph.Then,we intelligently design four embeddings(i.e.,Char2Vec,Token2Vec,AST2Vec,and Rela2Vec) and construct a multi-modal fusion algorithm to concatenate feature vectors from different views.Finally,we propose a combined model based on transformer and CNN-Bi LSTM to implement Power Shell family detection.Our experiments with five types of Power Shell attacks show that PowerDetector can accurately detect various obfuscated and stealth PowerShell scripts,with a 0.9402 precision,a 0.9358 recall,and a 0.9374 F1-score.Furthermore,through singlemodal and multi-modal comparison experiments,we demonstrate that PowerDetector’s multi-modal embedding and deep learning model can achieve better accuracy and even identify more unknown attacks.
基金supported by the National Natural Science Foundation of China(Grant No.81973695)Discipline with Strong Characteristics of Liaocheng University-Intelligent Science and Technology(Grant No.319462208).
文摘Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.
基金supported by the Chongqing Normal University Graduate Scientific Research Innovation Project (Grants YZH21014 and YZH21010).
文摘The learning status of learners directly affects the quality of learning.Compared with offline teachers,it is difficult for online teachers to capture the learning status of students in the whole class,and it is even more difficult to continue to pay attention to studentswhile teaching.Therefore,this paper proposes an online learning state analysis model based on a convolutional neural network and multi-dimensional information fusion.Specifically,a facial expression recognition model and an eye state recognition model are constructed to detect students’emotions and fatigue,respectively.By integrating the detected data with the homework test score data after online learning,an analysis model of students’online learning status is constructed.According to the PAD model,the learning state is expressed as three dimensions of students’understanding,engagement and interest,and then analyzed from multiple perspectives.Finally,the proposed model is applied to actual teaching,and procedural analysis of 5 different types of online classroom learners is carried out,and the validity of the model is verified by comparing with the results of the manual analysis.
文摘In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resolution,single viewpoint,and occlusion.Different from the existing works predicting symmetry from the complete shape,we propose a learning approach for symmetry predic-tion based on a single RGB-D image.Instead of directly predicting the symmetry from incomplete shapes,our method consists of two modules,i.e.,the multi-mod-al feature fusion module and the detection-by-reconstruction module.Firstly,we build a channel-transformer network(CTN)to extract cross-fusion features from the RGB-D as the multi-modal feature fusion module,which helps us aggregate features from the color and the depth separately.Then,our self-reconstruction net-work based on a 3D variational auto-encoder(3D-VAE)takes the global geo-metric features as input,followed by a prediction symmetry network to detect the symmetry.Our experiments are conducted on three public datasets:ShapeNet,YCB,and ScanNet,we demonstrate that our method can produce reliable and accurate results.
基金the National Natural Science Foundation of China(No.61976080)the Key Project on Research and Practice of Henan University Graduate Education and Teaching Reform(YJSJG2023XJ006)+1 种基金the Key Research and Development Projects of Henan Province(231111212500)the Henan University Graduate Education Innovation and Quality Improvement Program(SYLKC2023016).
文摘In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an adaptive temporal-spatial information fusion model is proposed.Firstly,an adaptive evaluation correction mechanism is constructed by the evidence distance and Deng entropy,which realizes the credibility discrimination and adaptive correction of the spatial evidence.Secondly,the credibility decay operator is introduced to obtain the dynamic credibility of temporal evidence.Finally,the sequential combination of temporal-spatial evidences is achieved by Shafer’s discount criterion and Dempster’s combination rule.The simulation results show that the proposed method not only considers the dynamic and sequential characteristics of the temporal-spatial evidences com-bination,but also has a strong conflict information processing capability,which provides a new refer-ence for the field of temporal-spatial information fusion.
文摘Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.
文摘With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much attention to heaRthcare robots and rehabilitation robots. To get natural and harmonious communication between the user and a service robot, the information perception/feedback ability, and interaction ability for service robots become more important in many key issues.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
文摘The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.
文摘This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated navigation system exist. Based on three sensors'(strapdown system, GPS receiver, Doppler radar) information fusion, a fault-tolerant navigation system is designed with this information fusion filter and two-ellipsoid overlap test. Simulation results show that the design is efficient with the soft-failure of gyro, accelerator, GPS receiver and Doppler radar.
基金The National Natural Science Foundation of China(No. 40804015,61101163)
文摘An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.