期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Application of Dual-Energy CT Non-Linear Fusion Technology in Improving CTA Image Quality of Renal Cancer 被引量:1
1
作者 Shuiqing Zhuo Xiaoling Chen +2 位作者 Jingping Yu Sihui Zeng Lizhi Liu 《Open Journal of Medical Imaging》 2018年第3期73-80,共8页
Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology a... Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology as renal cancer were collected and were randomly divided into experimental group and control group with 50 cases respectively. The two groups of patients were treated with iodine concentration of 300 mg/ml and 350 mg/ml non-ionic contrast agent, with a dosage of 1.5 ml/kg and an injection rate of 4 ml/s. The contrast agent intelligently tracking method was adopted bolus. The control group used the conventional CTA scanning, with a reference tube voltage/tube current of 100 kv/ref150 mas. The experimental group adopted the double energy scanning, with ball tube A and ball tube B. The reference tube voltage/tube current was 100 kv/ref250 mas and sn150 kv/ref125 mas respectively. The images of the experimental group were non-linear fused to obtain the Mono+ 55 kev single-energy images. The CT value, SNR contrast ratio of the abdominal aorta, renal artery and tumor tissue of the experimental group images and the 100 KV images and the Mono+ 55 kev images of the control group were compared. The objective evaluation and subjective evaluation of the image quality of the three groups of images was performed. Results: The results showed that the 100 kV images of the experimental group were statistically different from those of the control group (P05) in CT value, SNR and CNR (P 0.05). And there was no statistically significant difference between the non-linear fusion single-energy Mono+ 55 kev images and the control group images in CT value, SNR and CNR (P > 0.05). The subjective evaluation of image quality showed that there was no significant difference between Mono+ 55 kev images and control group images, and the quality of Mono+ 55 kev images was higher than that of experimental group 100 kV images. Conclusion: The dual-energy CT non-linear fusion technique can improve the quality of CTA image in patients with renal cancer, and it is possible to obtain high quality CTA images with low iodine concentration contrast agent. 展开更多
关键词 Dual-Source CT NON-LINEAR fusion technology RENAL Cancer COMPUTED Tomographic ANGIOGRAPHY image Quality
下载PDF
Research on Infrared Image Fusion Technology Based on Road Crack Detection
2
作者 Guangjun Li Lin Nan +3 位作者 Lu Zhang Manman Feng Yan Liu Xu Meng 《Journal of World Architecture》 2023年第3期21-26,共6页
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr... This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection. 展开更多
关键词 Road crack detection Infrared image fusion technology Detection quality
下载PDF
Test method of laser paint removal based on multi-modal feature fusion
3
作者 HUANG Hai-peng HAO Ben-tian +2 位作者 YE De-jun GAO Hao LI Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3385-3398,共14页
Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion net... Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion network model was constructed based on a laser paint removal experiment. The alignment of heterogeneous data under different modals was solved by combining the piecewise aggregate approximation and gramian angular field. Moreover, the attention mechanism was introduced to optimize the dual-path network and dense connection network, enabling the sampling characteristics to be extracted and integrated. Consequently, the multi-modal discriminant detection of laser paint removal was realized. According to the experimental results, the verification accuracy of the constructed model on the experimental dataset was 99.17%, which is 5.77% higher than the optimal single-modal detection results of the laser paint removal. The feature extraction network was optimized by the attention mechanism, and the model accuracy was increased by 3.3%. Results verify the improved classification performance of the constructed multi-modal feature fusion model in detecting laser paint removal, the effective integration of acoustic data and visual image data, and the accurate detection of laser paint removal. 展开更多
关键词 laser cleaning multi-modal fusion image processing deep learning
下载PDF
Intelligent Breast Cancer Prediction Empowered with Fusion and Deep Learning 被引量:6
4
作者 Shahan Yamin Siddiqui Iftikhar Naseer +4 位作者 Muhammad Adnan Khan Muhammad Faheem Mushtaq Rizwan Ali Naqvi Dildar Hussain Amir Haider 《Computers, Materials & Continua》 SCIE EI 2021年第4期1033-1049,共17页
Breast cancer is the most frequently detected tumor that eventually could result in a significant increase in female mortality globally.According to clinical statistics,one woman out of eight is under the threat of br... Breast cancer is the most frequently detected tumor that eventually could result in a significant increase in female mortality globally.According to clinical statistics,one woman out of eight is under the threat of breast cancer.Lifestyle and inheritance patterns may be a reason behind its spread among women.However,some preventive measures,such as tests and periodic clinical checks can mitigate its risk thereby,improving its survival chances substantially.Early diagnosis and initial stage treatment can help increase the survival rate.For that purpose,pathologists can gather support from nondestructive and efficient computer-aided diagnosis(CAD)systems.This study explores the breast cancer CAD method relying on multimodal medical imaging and decision-based fusion.In multimodal medical imaging fusion,a deep learning approach is applied,obtaining 97.5%accuracy with a 2.5%miss rate for breast cancer prediction.A deep extreme learning machine technique applied on feature-based data provided a 97.41%accuracy.Finally,decisionbased fusion applied to both breast cancer prediction models to diagnose its stages,resulted in an overall accuracy of 97.97%.The proposed system model provides more accurate results compared with other state-of-the-art approaches,rapidly diagnosing breast cancer to decrease its mortality rate. 展开更多
关键词 fusion feature breast cancer prediction deep learning convolutional neural network multi-modal medical image fusion decision-based fusion
下载PDF
Image De-occlusion via Event-enhanced Multi-modal Fusion Hybrid Network
5
作者 Si-Qi Li Yue Gao Qiong-Hai Dai 《Machine Intelligence Research》 EI CSCD 2022年第4期307-318,共12页
Seeing through dense occlusions and reconstructing scene images is an important but challenging task.Traditional framebased image de-occlusion methods may lead to fatal errors when facing extremely dense occlusions du... Seeing through dense occlusions and reconstructing scene images is an important but challenging task.Traditional framebased image de-occlusion methods may lead to fatal errors when facing extremely dense occlusions due to the lack of valid information available from the limited input occluded frames.Event cameras are bio-inspired vision sensors that record the brightness changes at each pixel asynchronously with high temporal resolution.However,synthesizing images solely from event streams is ill-posed since only the brightness changes are recorded in the event stream,and the initial brightness is unknown.In this paper,we propose an event-enhanced multi-modal fusion hybrid network for image de-occlusion,which uses event streams to provide complete scene information and frames to provide color and texture information.An event stream encoder based on the spiking neural network(SNN)is proposed to encode and denoise the event stream efficiently.A comparison loss is proposed to generate clearer results.Experimental results on a largescale event-based and frame-based image de-occlusion dataset demonstrate that our proposed method achieves state-of-the-art performance. 展开更多
关键词 Event camera multi-modal fusion image de-occlusion spiking neural network(SNN) image reconstruction
原文传递
VISUALIZATION OF HEAD AND NECK CANCER MODELS WITH A TRIPLE FUSION REPORTER GENE
6
作者 YING ZHENG QIAOYA LIN +2 位作者 HONGLIN JIN JUAN CHEN ZHIHONG ZHANG 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2012年第4期48-56,共9页
The development of experimental animal models for head and neck tumors generally rely on the biol uminescence imaging to achieve the dynamic monitoring of the tumor growth and metastasis due to the complicated anatomi... The development of experimental animal models for head and neck tumors generally rely on the biol uminescence imaging to achieve the dynamic monitoring of the tumor growth and metastasis due to the complicated anatomical structures.Since the bioluminescence imaging is largely affected by the intracellular luciferase expression level and external D-luciferin concentrations,its imaging accuracy requires further confirmation.Here,a new triple fusion reportelr gene,which consists of a herpes simplex virus type 1 thymidine kinase(TK)gene for radioactive imaging,a far-red fuorescent protein(mLumin)gene for fuorescent imaging,and a firefly luciferase gene for bioluminescence imaging,was introduced for in vrivo observation of the head and neck tumors through multi-modality imaging.Results show that fuorescence and bioluminescence signals from mLumin and luciferase,respectively,were clearly observed in tumor cells,and TK could activate suicide pathway of the cells in the presence of nucleotide analog-ganciclovir(GCV),demonstrating the effecti veness of individual functions of each gene.Moreover,subcutaneous and metastasis animal models for head and neck tumors using the fusion reporter gene-expressing cell lines were established,allowing multi-modality imaging in vio.Together,the established tumor models of head and neck cancer based on the newly developed triple fusion reporter gene are ideal for monitoring tumor growth,assessing the drug therapeutic efficacy and verifying the effec-tiveness of new treatments. 展开更多
关键词 Head and neck cancer tumor metastasis model three fusion reporter gene far-red fluorescent protein frefly luciferase multi-modality imaging
下载PDF
基于虚拟现实的大视差图像网格优化拼接算法
7
作者 李馥颖 张艳珠 《计算机仿真》 2024年第5期193-196,505,共5页
图像亮度、局部区域信息强度影响图像清晰度,导致图像拼接效果不佳,为提升图像拼接效果,提出一种基于虚拟现实的大视差图像网格优化拼接算法。基于虚拟现实技术建立一个虚拟现实拼接环境,在此环境下开展图像拼接处理,对待拼接图像实施... 图像亮度、局部区域信息强度影响图像清晰度,导致图像拼接效果不佳,为提升图像拼接效果,提出一种基于虚拟现实的大视差图像网格优化拼接算法。基于虚拟现实技术建立一个虚拟现实拼接环境,在此环境下开展图像拼接处理,对待拼接图像实施灰度化处理,增强图像局部区域信息强度;基于投影算法建立低密度的网格,并根据待拼接图像的匹配点分布结果建立网格矩阵,结合全局最佳相似变换矩阵实施矩阵加权叠加,对图像重叠区域展开失真校正;使用内容感知算法对图像重叠区域展开感知识别,找出其中的积累最小像素线,实施图像融合处理,通过融合结果完成大视差图像网格优化拼接。实验结果表明,使用该方法开展图像拼接时,图像拼接时间较短,均方根误差较低,拼接效果较好。 展开更多
关键词 虚拟现实技术 大视差图像 投影算法 灰度化处理 图像融合
下载PDF
3D打印联合影像融合技术在主动脉腔内治疗教学中的应用
8
作者 张宏鹏 牛泽林 +3 位作者 王立军 葛阳阳 卫任 郭伟 《卫生职业教育》 2024年第17期44-47,共4页
探讨3D打印联合影像融合技术在血管外科主动脉疾病腔内治疗教学中应用的效果。2020年3月至2023年10月在解放军总医院第一医学中心血管外科进行住院医师规范化轮转培训的60名学员的教学结果显示,该方法能提升学员学习兴趣,使其快速掌握... 探讨3D打印联合影像融合技术在血管外科主动脉疾病腔内治疗教学中应用的效果。2020年3月至2023年10月在解放军总医院第一医学中心血管外科进行住院医师规范化轮转培训的60名学员的教学结果显示,该方法能提升学员学习兴趣,使其快速掌握主动脉瘤的解剖结构,了解腔内治疗的基本原理和技能,为血管外科临床教学模式改进提供新的思路。 展开更多
关键词 影像融合技术 3D打印 主动脉瘤 腔内治疗技术
下载PDF
多模态影像融合技术在显微血管减压术治疗原发性舌咽神经痛中的应用 被引量:1
9
作者 赵田恒 朱徐楠 +3 位作者 杨思源 王嘉禾 陈罡 孙青 《中国临床神经外科杂志》 2024年第2期70-74,共5页
目的探讨多模态影像融合技术在显微血管减压术(MVD)治疗原发性舌咽神经痛中的作用。方法回顾性分析2019年1月至2020年1月MVD治疗的3例原发性舌咽神经痛的临床资料。术前均行3D-TOF-MRA和3D-FIESTA检查,利用BrainLab软件进行多模态影像融... 目的探讨多模态影像融合技术在显微血管减压术(MVD)治疗原发性舌咽神经痛中的作用。方法回顾性分析2019年1月至2020年1月MVD治疗的3例原发性舌咽神经痛的临床资料。术前均行3D-TOF-MRA和3D-FIESTA检查,利用BrainLab软件进行多模态影像融合,根据影像融合结果行MVD。结果多模态融合影像清晰显示责任动脉与神经的关系,3例均顺利完成手术,术中责任血管位置与术前多模态融合影像结果一致,术后即刻疼痛明显缓解,术后无出血、颅内感染、脑脊液漏。结论原发性舌咽神经痛进行MVD时,多模态影像融合技术可清晰显示责任血管,有利于提高手术的准确性、安全性、有效性,减少手术创伤。 展开更多
关键词 原发性舌咽神经痛 显微血管减压术 多模态影像融合技术
下载PDF
DR及DTS在寰枢关节半脱位诊断及分型中的价值研究 被引量:1
10
作者 曾桔 陈君蓉 李向阳 《中国CT和MRI杂志》 2024年第1期145-148,共4页
目的观察寰枢关节半脱位的影像学表现,探讨DR和X线数字化断层融合成像(DTS)技术在其诊断及分型中的价值。方法回顾性收集67例经临床及影像学检查诊断为寰枢关节半脱位的患者,分析其CT影像学表现,比较寰枢关节X线张口正位+侧位片、断层正... 目的观察寰枢关节半脱位的影像学表现,探讨DR和X线数字化断层融合成像(DTS)技术在其诊断及分型中的价值。方法回顾性收集67例经临床及影像学检查诊断为寰枢关节半脱位的患者,分析其CT影像学表现,比较寰枢关节X线张口正位+侧位片、断层正位+侧位片的图像质量、诊断准确率、诊断一致性。结果寰椎关节前脱位的患者共有6例,侧方脱位40例,旋转脱位17例,复合脱位4例。有57%的DR片能用于诊断,有94%的DTS片能用于诊断,差异有统计学意义(P<0.05)。DR图像的诊断总准确率为42%,DTS图像的诊断总准确率为81%,差异具有统计学意义(P<0.05)。DR图像的诊断总准确率为24%,DTS图像的诊断总准确率为76%,差异具有统计学意义(P<0.05)。DR片诊断侧方脱位的准确率最高,为38%,诊断前脱位的准确率为17%。DTS片诊断前断脱位的准确率最高,为100%,诊断侧方脱位的准确率为92%,诊断旋转脱位的准确率为29%,诊断复合脱位的准确率为75%。二者诊断前脱位的诊确率没有统计学差异,而诊断侧方脱位的准确率差异具有统计学意义(P<0.05)。DR片诊断寰枢关节半脱位的一致性差(Kappa=0.28,P<0.05),DTS片的诊断一致性中等(Kappa=0.68,P<0.05)。结论DTS图像质量明显优于DR,在寰枢关节半脱位诊断及分型中的准确率、一致性也明显高于后者。 展开更多
关键词 寰枢关节半脱位 X线数字化断层融合成像技术 诊断 一致性
下载PDF
基于深度学习与仿人眼视觉成像的图像融合技术研究
11
作者 尚福洲 庄新港 +3 位作者 刘长明 刘红波 沈荣仁 赵耀 《科技创新与应用》 2024年第21期32-35,共4页
近年来,针对导航避障、勘探救援等领域的需求,城市环境下遮蔽目标的成像技术成为研究热点。该文首先分析目前三维成像的技术现状,之后针对城市环境的特殊性,重点研究基于深度学习与仿人眼视觉成像的图像融合技术,并对该方法进行测试验证... 近年来,针对导航避障、勘探救援等领域的需求,城市环境下遮蔽目标的成像技术成为研究热点。该文首先分析目前三维成像的技术现状,之后针对城市环境的特殊性,重点研究基于深度学习与仿人眼视觉成像的图像融合技术,并对该方法进行测试验证,实验结果表明,该方法明显提高对目标图像的识别效率。 展开更多
关键词 深度学习 三维成像 仿人眼 视觉成像 图像融合技术
下载PDF
CT/磁共振成像融合成像技术在原发性肝癌精准射频治疗中的应用效果
12
作者 宋蒙蒙 强军 文红 《实用医学影像杂志》 2024年第3期179-182,共4页
目的 分析CT/磁共振成像(MRI)融合成像技术在原发性肝癌精准射频治疗中的应用效果。方法 选择本院在2018年1月至2020年1月的64例原发性肝癌精准射频治疗患者作为研究对象,以随机数字表法对患者进行分组,每组32例,给予对照组患者CT成像,... 目的 分析CT/磁共振成像(MRI)融合成像技术在原发性肝癌精准射频治疗中的应用效果。方法 选择本院在2018年1月至2020年1月的64例原发性肝癌精准射频治疗患者作为研究对象,以随机数字表法对患者进行分组,每组32例,给予对照组患者CT成像,给予观察组患者CT/MRI融合成像,对比诊断结果和相关参数。结果 观察组完成射频消融(100%)、术后完全消融发生率(100%)与对照组94%、94%对比差异无统计学意义(P>0.05);观察组术中补充消融发生率19%高于对照组3%,差异有统计学意义(P<0.05)。观察组术后6个月、术后1年存活率分别为94%、94%与对照组88%、84%对比差异无统计学意义(P>0.05);观察组术后2年存活率94%高于对照组75%,差异有统计学意义(P<0.05)。治疗后患者PVP指标与治疗前差异无统计学意义(P>0.05);治疗后患者肝动脉灌注量、总肝血流量、肝动脉灌注指数指标低于对照组,差异有统计学意义(P<0.05)。结论 原发性肝癌精准射频治疗中使用CT/MRI融合成像技术不仅可以有效显示病灶,特别是常规超声现象诊断较为困难的病灶,同时可随时对疾病的治疗情况、肿瘤发展进行监控,具有较高的临床推广价值。 展开更多
关键词 肝肿瘤 射频疗法 CT/MRI融合成像技术 效果
下载PDF
基于视觉传达技术的激光图像多级融合方法研究
13
作者 宁晓蕾 张思斯 《激光杂志》 CAS 北大核心 2024年第4期141-147,共7页
设计了基于视觉传达技术的激光图像多级融合方法,以获得突出的视觉传达效果。首先采用改进单尺度Retinex算法提取原始激光图的反射图像,并通过高斯-拉普拉斯算法的重构获得的多尺度彩色图像,实现原始激光图像的增强,然后采用深度堆叠卷... 设计了基于视觉传达技术的激光图像多级融合方法,以获得突出的视觉传达效果。首先采用改进单尺度Retinex算法提取原始激光图的反射图像,并通过高斯-拉普拉斯算法的重构获得的多尺度彩色图像,实现原始激光图像的增强,然后采用深度堆叠卷积神经网络对获得高、低频图像,并依据最大局部方差融高频图像,根据匹配度与阈值的对比融合低频图像,最后实验结果表明:堆叠CNN数量为4时,融合后的激光图像视觉传达效果最优,该方法增强后的激光图像局部细节信息丰富、色彩饱满度好,融合图像的图像最大灰度值频率仅为0.015。 展开更多
关键词 视觉传达技术 激光图像 多级融合 单尺度Retinex 深度堆叠卷积神经网络 融合规则
下载PDF
Explainable Conformer Network for Detection of COVID-19 Pneumonia from Chest CT Scan: From Concepts toward Clinical Explainability
14
作者 Mohamed Abdel-Basset Hossam Hawash +2 位作者 Mohamed Abouhawwash S.S.Askar Alshaimaa A.Tantawy 《Computers, Materials & Continua》 SCIE EI 2024年第1期1171-1187,共17页
The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans.This study aims to investigate the indispensable need for preci... The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans.This study aims to investigate the indispensable need for precise and interpretable diagnostic tools for improving clinical decision-making for COVID-19 diagnosis.This paper proposes a novel deep learning approach,called Conformer Network,for explainable discrimination of viral pneumonia depending on the lung Region of Infections(ROI)within a single modality radiographic CT scan.Firstly,an efficient U-shaped transformer network is integrated for lung image segmentation.Then,a robust transfer learning technique is introduced to design a robust feature extractor based on pre-trained lightweight Big Transfer(BiT-L)and finetuned on medical data to effectively learn the patterns of infection in the input image.Secondly,this work presents a visual explanation method to guarantee clinical explainability for decisions made by Conformer Network.Experimental evaluation of real-world CT data demonstrated that the diagnostic accuracy of ourmodel outperforms cutting-edge studies with statistical significance.The Conformer Network achieves 97.40% of detection accuracy under cross-validation settings.Our model not only achieves high sensitivity and specificity but also affords visualizations of salient features contributing to each classification decision,enhancing the overall transparency and trustworthiness of our model.The findings provide obvious implications for the ability of our model to empower clinical staff by generating transparent intuitions about the features driving diagnostic decisions. 展开更多
关键词 Deep learning COVID-19 multi-modal medical image fusion diagnostic image fusion
下载PDF
基于多尺度融合与USM的蒙古族家具纹样增强研究
15
作者 院霖享 董霙达 +1 位作者 多化琼 王明涛 《林产工业》 北大核心 2024年第2期29-33,共5页
为提高蒙古族家具纹样图像的全局对比度、颜色和精细细节,提出了一种基于改进的多尺度融合和USM的图像增强算法。首先对图像采用非锐化掩模技术增强纹样的细节区域,在此基础上进行白平衡处理,然后根据对比度的需求定义权重,最后进行多... 为提高蒙古族家具纹样图像的全局对比度、颜色和精细细节,提出了一种基于改进的多尺度融合和USM的图像增强算法。首先对图像采用非锐化掩模技术增强纹样的细节区域,在此基础上进行白平衡处理,然后根据对比度的需求定义权重,最后进行多尺度融合能更好地体现出图像中有价值的信息和样式。结果表明:该算法能突出纹样的细节部位,图像颜色更加自然直观,有效地增强了蒙古族家具纹样的图片;该方法可为缺失纹路的蒙古族家具纹样复原提供技术支撑,同时对蒙古族家具纹样的保护具有重要意义。 展开更多
关键词 多尺度融合增强 归一化权重 图像增强 非锐化掩模技术 蒙古族家具纹样
下载PDF
3D图像融合技术在血管腔内技术培训中的应用
16
作者 王沫 舒畅 +2 位作者 刘鼎骁 卢朋 黎明 《智慧健康》 2024年第25期1-3,7,共4页
目的评估3D图像融合技术应用于血管外科研究生血管腔内基本操作培训的效果。方法将2021年3月—2023年3月在中南大学湘雅二医院血管外科从事临床工作的研究生随机分为对照组和试验组,培训后分别在数字减影血管造影(DSA)引导下,以及在DSA... 目的评估3D图像融合技术应用于血管外科研究生血管腔内基本操作培训的效果。方法将2021年3月—2023年3月在中南大学湘雅二医院血管外科从事临床工作的研究生随机分为对照组和试验组,培训后分别在数字减影血管造影(DSA)引导下,以及在DSA+3D图像融合技术辅助下进行操作考核。比较两组的考核结果,包括操作成功率、操作次数、操作时长、射线时间、射线量及造影剂用量等指标。结果硕士研究生考核股动脉穿刺,对照组的操作次数高于试验组,两组比较差异有统计学意义(P<0.05);对照组的操作时长长于试验组,两组比较差异无统计学意义(P<0.05)。博士研究生考核分支动脉选择技术,对照组的操作时长、射线时间长于试验组,造影剂用量高于试验组,两组比较差异有统计学意义(P<0.05);对照组射线量高于试验组,两组比较差异无统计学意义(P>0.05)。结论应用3D图像融合技术能够显著提升血管外科研究生的血管腔内技术水平及操作熟练程度,减少操作过程中的射线剂量和造影剂用量,具有推广价值。 展开更多
关键词 3D图像融合 血管腔内技术 血管外科
下载PDF
超声影像融合技术在胆总管结石中的应用
17
作者 张禄桐 杨慧 +2 位作者 郑桂霞 袁颖 卢杉 《生命科学仪器》 2024年第3期23-25,共3页
目的研究应用超声影像融合技术诊断胆总管结石的临床价值。方法选择2023年1月至2023年12月间在医院接受治疗的疑似胆总管结石患者50例,入院后先对其实施磁共振胰胆管成像检查,再实施超声影像融合检查。以内镜下逆行胰胆管造影检查结果... 目的研究应用超声影像融合技术诊断胆总管结石的临床价值。方法选择2023年1月至2023年12月间在医院接受治疗的疑似胆总管结石患者50例,入院后先对其实施磁共振胰胆管成像检查,再实施超声影像融合检查。以内镜下逆行胰胆管造影检查结果为金标准,观察超声影像融合技术诊断胆总管结石的临床效能,记录检查时间。结果经内镜下逆行胰胆管造影检查,50例患者2,阳性46例,阳性率92.00%。超声影像融合技术诊断胆总管结石的阳性率明显高于磁共振胰胆管成像检查,P<0.05;超声影像融合技术诊断胆总管结石的灵敏度、特异度、阴性预测值、阳性预测值、准确度均高于磁共振胰胆管成像检查,P<0.05。超声影像融合技术的检查准备时间、操作时间、确诊时间均短于磁共振胰胆管成像检查,P<0.05。结论对胆总管结石患者采用超声影像融合技术诊断准确率性高,检查时间短。 展开更多
关键词 胆总管结石 超声影像融合技术 磁共振胰胆管成像检查 诊断效能
下载PDF
基于视觉传达技术的舰船航行图像去雾增强方法
18
作者 井新新 《舰船科学技术》 北大核心 2024年第7期163-166,共4页
大雾天气对舰船在海上航行的安全造成极大干扰,同时也对雾天舰船的作战能力产生影响。大雾天气下获取的图像会存在舰船特征信息丢失、对比度失真等情况,本文提出基于视觉传达技术的舰船航行图像去雾增强方法,研究雾天的图像衰减模型,在... 大雾天气对舰船在海上航行的安全造成极大干扰,同时也对雾天舰船的作战能力产生影响。大雾天气下获取的图像会存在舰船特征信息丢失、对比度失真等情况,本文提出基于视觉传达技术的舰船航行图像去雾增强方法,研究雾天的图像衰减模型,在此基础上研究直方图均衡法和多源目标融合图像去雾算法,并对比不同算法的图像去雾效果。提出基于视觉传达的船舶特征提取方法,实现视觉传达的雾天舰船航行图像监控系统,通过对图像的去雾及增强,改善了雾天下图像的视觉效果,提升了舰船航行的安全性。 展开更多
关键词 视觉传达技术 图像去雾 舰船 图像融合 特征提取
下载PDF
基于人工智能感官技术的中药质量控制方法研究进展
19
作者 江如蓝 雷结语 +1 位作者 陈文礼 徐新军 《药学前沿》 CAS 2024年第11期550-556,共7页
为深入推进和实现中医药现代化,建立一种既尊重中医理论又顺应时代发展的中药材质量控制体系尤为重要。自古以来,中药材的色、气、味等外观性状是用于辨别其真伪及质量好坏的重要标准之一。目前对中药外观性状的研究逐渐从主观的“辨状... 为深入推进和实现中医药现代化,建立一种既尊重中医理论又顺应时代发展的中药材质量控制体系尤为重要。自古以来,中药材的色、气、味等外观性状是用于辨别其真伪及质量好坏的重要标准之一。目前对中药外观性状的研究逐渐从主观的“辨状论质”转向了能够提供客观数据支持的人工智能感官技术,根据模拟感官的不同,智能感官技术又可以分为电子眼、电子鼻、电子舌、电子耳和电子皮肤等。本文梳理了5种人工智能感官技术的原理以及在中药质量评价中的应用,介绍了基于智能感官的中药质量控制体系的研究现状和未来发展趋势,以期为中药材质量控制体系的升级和现代化发展提供参考。 展开更多
关键词 智能感官 外观性状 辨状论质 质量控制 品质评价 中药识别 成分检测 深度学习 多源信息融合 图像识别技术 人工智能
下载PDF
基于物联网技术的跨模态图像修改方法研究
20
作者 陈严 《电视技术》 2024年第11期17-19,共3页
探讨基于物联网技术的跨模态图像修改方法。通过部署多模态传感器采集场景数据,利用深度学习和注意力机制进行跨模态融合,引入上下文感知机制实现智能图像编辑。实验结果表明,所提方法在修改质量和语义一致性方面均优于基线方法,同时保... 探讨基于物联网技术的跨模态图像修改方法。通过部署多模态传感器采集场景数据,利用深度学习和注意力机制进行跨模态融合,引入上下文感知机制实现智能图像编辑。实验结果表明,所提方法在修改质量和语义一致性方面均优于基线方法,同时保持了较高的计算效率。 展开更多
关键词 物联网技术 跨模态融合 图像修改
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部