With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is cruci...With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is crucial.This research addresses the vulnerability of blockchain systems to DDoS assaults,which undermine their core decentralized characteristics,posing threats to their security and reliability.We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks.To ensure the robustness and validity of our approach,a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset.Using this,our methodology was applied to detect DDoS threats and further classify them into seven unique attack subcategories.To cope with the broad spectrum of DDoS attack variations,a holistic framework has been pro-posed that seamlessly integrates five machine learning models:Gate Recurrent Unit(GRU),Convolutional Neural Networks(CNN),Long-Short Term Memory(LSTM),Deep Neural Networks(DNN),and Support Vector Machine(SVM).The innovative aspect of our framework is the introduction of a dynamic weight adjustment mechanism,enhancing the system’s adaptability.Experimental results substantiate the superiority of our ensemble method in comparison to singular models across various evaluation metrics.The framework displayed remarkable accuracy,with rates reaching 99.71%for detection and 87.62%for classification tasks.By developing a comprehensive and adaptive methodology,this study paves the way for strengthening the defense mechanisms of blockchain systems against DDoS attacks.The ensemble approach,combined with the dynamic weight adjustment,offers promise in ensuring blockchain’s enduring security and trustworthiness.展开更多
Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been s...Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been shown to play an important role in AML leukemogenesis and progression.In the current study,we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas(TCGA)based on differential gene expression analysis and univariable Cox proportional hazards regression analysis.By using multi-model analysis,including Adaptive LASSO regression,LASSO regression,and Elastic Net,we constructed a 9-CSMs prognostic model for risk stratification of the AML patients.The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels.Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients.The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores.Notably,single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance.Furthermore,PI3K inhibitors were identified as potential treatments for these high-risk patients.In conclusion,we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.展开更多
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional...Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.展开更多
Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du...Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.展开更多
Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data ...Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data collected supports the real-time decision-making required for diverse applications.The communication infrastructure relies on different network types,including the Internet.This makes the infrastructure vulnerable to various attacks,which could compromise security or have devastating effects.However,traditional machine learning solutions cannot adapt to the increasing complexity and diversity of attacks.The objective of this paper is to develop an Anomaly Detection System(ADS)based on deep learning using the CIC-IDS2017 dataset.However,this dataset is highly imbalanced;thus,a two-step sampling technique:random under-sampling and the Synthetic Minority Oversampling Technique(SMOTE),is proposed to balance the dataset.The proposed system utilizes a multiple hidden layer Auto-encoder(AE)for feature extraction and dimensional reduction.In addition,an ensemble voting based on both Random Forest(RF)and Convolu-tional Neural Network(CNN)is developed to classify the multiclass attack cate-gories.The proposed system is evaluated and compared with six different state-of-the-art machine learning and deep learning algorithms:Random Forest(RF),Light Gradient Boosting Machine(LightGBM),eXtreme Gradient Boosting(XGboost),Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and bidirectional LSTM(biLSTM).Experimental results show that the proposed model enhances the detection for each attack class compared with the other machine learning and deep learning models with overall accuracy(98.29%),precision(99%),recall(98%),F_(1) score(98%),and the UNDetection rate(UND)(8%).展开更多
As the process comes into 28nm node and below,lithography struggles stronger between high resolution (high NA) and enough process window especially for hole layers (Contacts and Vias).Taking more care of process windo...As the process comes into 28nm node and below,lithography struggles stronger between high resolution (high NA) and enough process window especially for hole layers (Contacts and Vias).Taking more care of process window may result in lower image quality of structures and bigger uncertainty in OPC model accuracy.Besides,it is difficult to cover all kinds of test structures within acceptable accuracy in one OPC model because of distinct difference of image quality of different patterns.To solve these problems,this paper introduces an innovative method of applying multi-models in one layer OPC.According to different characteristic features,multiple models are applied respectively and the fitting on these features with poor resolution can be improved by re-optimizing based on related model.A practice for 28 nm Via layer modeling calibration is given,and it shows an evident improvement of model accuracy through the implementing of multiple models scheme.展开更多
Based on traveling ballot mode,we propose a secure quantum anonymous voting via Greenberger–Horne–Zeilinger(GHZ)states.In this scheme,each legal voter performs unitary operation on corresponding position of particle...Based on traveling ballot mode,we propose a secure quantum anonymous voting via Greenberger–Horne–Zeilinger(GHZ)states.In this scheme,each legal voter performs unitary operation on corresponding position of particle sequence to encode his/her voting content.The voters have multiple ballot items to choose rather than just binary options“yes”or“no”.After counting votes phase,any participant who is interested in voting results can obtain the voting results.To improve the efficiency of the traveling quantum anonymous voting scheme,an optimization method based on grouping strategy is also presented.Compared with the most existing traveling quantum voting schemes,the proposed scheme is more practical because of its privacy,verifiability and non-repeatability.Furthermore,the security analysis shows that the proposed traveling quantum anonymous voting scheme can prevent various attacks and ensure high security.展开更多
Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most exi...Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most existing studies on the IM problem focus on static social network features,while neglecting the features of temporal social networks.To bridge this gap,we focus on node features reflected by their historical interaction behavior in temporal social networks,i.e.,interaction attributes and self-similarity,and incorporate them into the influence maximization algorithm and information propagation model.Firstly,we propose a node feature-aware voting algorithm,called ISVoteRank,for seed nodes selection.Specifically,before voting,the algorithm sets the initial voting ability of nodes in a personalized manner by combining their features.During the voting process,voting weights are set based on the interaction strength between nodes,allowing nodes to vote at different extents and subsequently weakening their voting ability accordingly.The process concludes by selecting the top k nodes with the highest voting scores as seeds,avoiding the inefficiency of iterative seed selection in traditional voting-based algorithms.Secondly,we extend the Independent Cascade(IC)model and propose the Dynamic Independent Cascade(DIC)model,which aims to capture the dynamic features in the information propagation process by combining node features.Finally,experiments demonstrate that the ISVoteRank algorithm has been improved in both effectiveness and efficiency compared to baseline methods,and the influence spread through the DIC model is improved compared to the IC model.展开更多
Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange ...Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.展开更多
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML models.The increase in the diversification of training samples increases the generalization capabilities,which ...In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML models.The increase in the diversification of training samples increases the generalization capabilities,which enhances the prediction performance of classifiers when tested on unseen examples.Deep learning(DL)models have a lot of parameters,and they frequently overfit.Effectively,to avoid overfitting,data plays a major role to augment the latest improvements in DL.Nevertheless,reliable data collection is a major limiting factor.Frequently,this problem is undertaken by combining augmentation of data,transfer learning,dropout,and methods of normalization in batches.In this paper,we introduce the application of data augmentation in the field of image classification using Random Multi-model Deep Learning(RMDL)which uses the association approaches of multi-DL to yield random models for classification.We present a methodology for using Generative Adversarial Networks(GANs)to generate images for data augmenting.Through experiments,we discover that samples generated by GANs when fed into RMDL improve both accuracy and model efficiency.Experimenting across both MNIST and CIAFAR-10 datasets show that,error rate with proposed approach has been decreased with different random models.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.62162022,62162024)Hainan Provincial Natural Science Foundation of China(Grant Nos.723QN238,621RC612).
文摘With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is crucial.This research addresses the vulnerability of blockchain systems to DDoS assaults,which undermine their core decentralized characteristics,posing threats to their security and reliability.We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks.To ensure the robustness and validity of our approach,a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset.Using this,our methodology was applied to detect DDoS threats and further classify them into seven unique attack subcategories.To cope with the broad spectrum of DDoS attack variations,a holistic framework has been pro-posed that seamlessly integrates five machine learning models:Gate Recurrent Unit(GRU),Convolutional Neural Networks(CNN),Long-Short Term Memory(LSTM),Deep Neural Networks(DNN),and Support Vector Machine(SVM).The innovative aspect of our framework is the introduction of a dynamic weight adjustment mechanism,enhancing the system’s adaptability.Experimental results substantiate the superiority of our ensemble method in comparison to singular models across various evaluation metrics.The framework displayed remarkable accuracy,with rates reaching 99.71%for detection and 87.62%for classification tasks.By developing a comprehensive and adaptive methodology,this study paves the way for strengthening the defense mechanisms of blockchain systems against DDoS attacks.The ensemble approach,combined with the dynamic weight adjustment,offers promise in ensuring blockchain’s enduring security and trustworthiness.
基金supported by the National Natural Science Foundation of China(Grant Nos.32200590 to K.L.,81972358 to Q.W.,91959113 to Q.W.,and 82372897 to Q.W.)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210530 to K.L.).
文摘Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been shown to play an important role in AML leukemogenesis and progression.In the current study,we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas(TCGA)based on differential gene expression analysis and univariable Cox proportional hazards regression analysis.By using multi-model analysis,including Adaptive LASSO regression,LASSO regression,and Elastic Net,we constructed a 9-CSMs prognostic model for risk stratification of the AML patients.The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels.Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients.The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores.Notably,single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance.Furthermore,PI3K inhibitors were identified as potential treatments for these high-risk patients.In conclusion,we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.
基金National Natural Science Foundation of China Nos.61962054 and 62372353.
文摘Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.
文摘Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.
文摘Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data collected supports the real-time decision-making required for diverse applications.The communication infrastructure relies on different network types,including the Internet.This makes the infrastructure vulnerable to various attacks,which could compromise security or have devastating effects.However,traditional machine learning solutions cannot adapt to the increasing complexity and diversity of attacks.The objective of this paper is to develop an Anomaly Detection System(ADS)based on deep learning using the CIC-IDS2017 dataset.However,this dataset is highly imbalanced;thus,a two-step sampling technique:random under-sampling and the Synthetic Minority Oversampling Technique(SMOTE),is proposed to balance the dataset.The proposed system utilizes a multiple hidden layer Auto-encoder(AE)for feature extraction and dimensional reduction.In addition,an ensemble voting based on both Random Forest(RF)and Convolu-tional Neural Network(CNN)is developed to classify the multiclass attack cate-gories.The proposed system is evaluated and compared with six different state-of-the-art machine learning and deep learning algorithms:Random Forest(RF),Light Gradient Boosting Machine(LightGBM),eXtreme Gradient Boosting(XGboost),Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and bidirectional LSTM(biLSTM).Experimental results show that the proposed model enhances the detection for each attack class compared with the other machine learning and deep learning models with overall accuracy(98.29%),precision(99%),recall(98%),F_(1) score(98%),and the UNDetection rate(UND)(8%).
文摘As the process comes into 28nm node and below,lithography struggles stronger between high resolution (high NA) and enough process window especially for hole layers (Contacts and Vias).Taking more care of process window may result in lower image quality of structures and bigger uncertainty in OPC model accuracy.Besides,it is difficult to cover all kinds of test structures within acceptable accuracy in one OPC model because of distinct difference of image quality of different patterns.To solve these problems,this paper introduces an innovative method of applying multi-models in one layer OPC.According to different characteristic features,multiple models are applied respectively and the fitting on these features with poor resolution can be improved by re-optimizing based on related model.A practice for 28 nm Via layer modeling calibration is given,and it shows an evident improvement of model accuracy through the implementing of multiple models scheme.
基金supported by the Tang Scholar Project of Soochow Universitythe National Natural Science Foundation of China(Grant No.61873162)+1 种基金the Fund from Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication NetworkSuzhou Key Laboratory of Advanced Optical Communication Network Technology。
文摘Based on traveling ballot mode,we propose a secure quantum anonymous voting via Greenberger–Horne–Zeilinger(GHZ)states.In this scheme,each legal voter performs unitary operation on corresponding position of particle sequence to encode his/her voting content.The voters have multiple ballot items to choose rather than just binary options“yes”or“no”.After counting votes phase,any participant who is interested in voting results can obtain the voting results.To improve the efficiency of the traveling quantum anonymous voting scheme,an optimization method based on grouping strategy is also presented.Compared with the most existing traveling quantum voting schemes,the proposed scheme is more practical because of its privacy,verifiability and non-repeatability.Furthermore,the security analysis shows that the proposed traveling quantum anonymous voting scheme can prevent various attacks and ensure high security.
基金supported by the Fundamental Research Funds for the Universities of Heilongjiang(Nos.145109217,135509234)the Youth Science and Technology Innovation Personnel Training Project of Heilongjiang(No.UNPYSCT-2020072)the Innovative Research Projects for Postgraduates of Qiqihar University(No.YJSCX2022048).
文摘Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most existing studies on the IM problem focus on static social network features,while neglecting the features of temporal social networks.To bridge this gap,we focus on node features reflected by their historical interaction behavior in temporal social networks,i.e.,interaction attributes and self-similarity,and incorporate them into the influence maximization algorithm and information propagation model.Firstly,we propose a node feature-aware voting algorithm,called ISVoteRank,for seed nodes selection.Specifically,before voting,the algorithm sets the initial voting ability of nodes in a personalized manner by combining their features.During the voting process,voting weights are set based on the interaction strength between nodes,allowing nodes to vote at different extents and subsequently weakening their voting ability accordingly.The process concludes by selecting the top k nodes with the highest voting scores as seeds,avoiding the inefficiency of iterative seed selection in traditional voting-based algorithms.Secondly,we extend the Independent Cascade(IC)model and propose the Dynamic Independent Cascade(DIC)model,which aims to capture the dynamic features in the information propagation process by combining node features.Finally,experiments demonstrate that the ISVoteRank algorithm has been improved in both effectiveness and efficiency compared to baseline methods,and the influence spread through the DIC model is improved compared to the IC model.
文摘Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.
基金The researchers would like to thank the Deanship of Scientific Research,Qassim University for funding the publication of this project.
文摘In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML models.The increase in the diversification of training samples increases the generalization capabilities,which enhances the prediction performance of classifiers when tested on unseen examples.Deep learning(DL)models have a lot of parameters,and they frequently overfit.Effectively,to avoid overfitting,data plays a major role to augment the latest improvements in DL.Nevertheless,reliable data collection is a major limiting factor.Frequently,this problem is undertaken by combining augmentation of data,transfer learning,dropout,and methods of normalization in batches.In this paper,we introduce the application of data augmentation in the field of image classification using Random Multi-model Deep Learning(RMDL)which uses the association approaches of multi-DL to yield random models for classification.We present a methodology for using Generative Adversarial Networks(GANs)to generate images for data augmenting.Through experiments,we discover that samples generated by GANs when fed into RMDL improve both accuracy and model efficiency.Experimenting across both MNIST and CIAFAR-10 datasets show that,error rate with proposed approach has been decreased with different random models.