A new method for combining features via importance-inhibition analysis (IIA) is described to obtain more effective feature combination in learning question classification. Features are combined based on the inhibiti...A new method for combining features via importance-inhibition analysis (IIA) is described to obtain more effective feature combination in learning question classification. Features are combined based on the inhibition among features as well as the importance of individual features. Experimental results on the Chinese questions set show that, the IIA method shows a gradual increase in average and maximum accuracies at all feature combinations, and achieves great improvement over the importance analysis(IA) method on the whole. Moreover, the IIA method achieves the same highest accuracy as the one by the exhaustive method, and further improves the performance of question classification.展开更多
The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,thi...The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements.展开更多
The method of extracting the basic features of part from the file of STEPAP214 of 3-D model is proposed. All faces in the file are the minimal elements. The combination isdone for the faces with geometry restrictions ...The method of extracting the basic features of part from the file of STEPAP214 of 3-D model is proposed. All faces in the file are the minimal elements. The combination isdone for the faces with geometry restrictions and some attributes by the theory of the bestalphabetic tree which is constructed by HU--TUCKER algorithm in combination principle. So the basicfeatures could be attained. This provides the research basis to the more share and integration ofCAD information in the virtual enterprises. Finally, a case is used to illustrate the validity ofthe approach.展开更多
Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim...Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes.展开更多
Objective To analyze the clinical features of the multiple trauma patients combined with spine and spinal cord injuries.Methods A retrospective study was performed in143multiple trauma patients combined with spine and...Objective To analyze the clinical features of the multiple trauma patients combined with spine and spinal cord injuries.Methods A retrospective study was performed in143multiple trauma patients combined with spine and spinal展开更多
New value systems and new aesthetic experience have been formed in the new era,triggered by reform of technical means and transformation of social economy. New multimedia technologies will produce new feelings,new exp...New value systems and new aesthetic experience have been formed in the new era,triggered by reform of technical means and transformation of social economy. New multimedia technologies will produce new feelings,new experience and new ways of thinking,which correspondingly result in changes of landscape designs. Virtual reality technology is used to build autokinetic effect and mobility of feature wall,complex structures and forms,vivid and creative landscape elements,so that the landscapes will interact with users intimately,and humanized landscape spaces will be created.展开更多
Although evidence theory has been widely used in information fusion due to its effectiveness of uncertainty reasoning, the classical DS evidence theory involves counter-intuitive behaviors when high conflict informati...Although evidence theory has been widely used in information fusion due to its effectiveness of uncertainty reasoning, the classical DS evidence theory involves counter-intuitive behaviors when high conflict information exists. Many modification methods have been developed which can be classified into the following two kinds of ideas, either modifying the combination rules or modifying the evidence sources. In order to make the modification more reasonable and more effective, this paper gives a thorough analysis of some typical existing modification methods firstly, and then extracts the intrinsic feature of the evidence sources by using evidence distance theory. Based on the extracted features, two modified plans of evidence theory according to the corresponding modification ideas have been proposed. The results of numerical examples prove the good performance of the plans when combining evidence sources with high conflict information.展开更多
China is gradually establishing a multidisciplinary diagnosis and treatment system of traditional Chinese medicine(TCM)and western medicine.TCM-drug combination is prone to adverse reactions.Clinical feature is the ap...China is gradually establishing a multidisciplinary diagnosis and treatment system of traditional Chinese medicine(TCM)and western medicine.TCM-drug combination is prone to adverse reactions.Clinical feature is the appearance of adverse reactions,and target is the internal mechanism.The establishment of feature and target correlation model will contribute to the development of this field.This paper introduces the four steps of feature-target correlation method that risk identification,feature extraction,sign target correlation and experimental research.Xiyanping-Ribavirin combination is as an example to illustrate this method.It is expected that the method will be popularized and applied to protect clinical safety.展开更多
In order to improve the accuracy and stability of fruit and vegetable image recognition by single feature,this project proposed multi-feature fusion algorithms and SVM classification algorithms.This project not only i...In order to improve the accuracy and stability of fruit and vegetable image recognition by single feature,this project proposed multi-feature fusion algorithms and SVM classification algorithms.This project not only introduces the Reproducing Kernel Hilbert space to improve the multi-feature compatibility and improve multi-feature fusion algorithm,but also introduces TPS transformation model in SVM classifier to improve the classification accuracy,real-time and robustness of integration feature.By using multi-feature fusion algorithms and SVM classification algorithms,experimental results show that we can recognize the common fruit and vegetable images efficiently and accurately.展开更多
Precise web page classification can be achieved by evaluating features of web pages, and the structural features of web pages are effective complements to their textual features. Various classifiers have different cha...Precise web page classification can be achieved by evaluating features of web pages, and the structural features of web pages are effective complements to their textual features. Various classifiers have different characteristics, and multiple classifiers can be combined to allow classifiers to complement one another. In this study, a web page classification method based on heterogeneous features and a combination of multiple classifiers is proposed. Different from computing the frequency of HTML tags, we exploit the tree-like structure of HTML tags to characterize the structural features of a web page. Heterogeneous textual features and the proposed tree-like structural features are converted into vectors and fused. Confidence is proposed here as a criterion to compare the classification results of different classifiers by calculating the classification accuracy of a set of samples. Multiple classifiers are combined based on confidence with different decision strategies, such as voting, confidence comparison, and direct output, to give the final classification results. Experimental results demonstrate that on the Amazon dataset, 7-web-genres dataset, and DMOZ dataset, the accuracies are increased to 94.2%, 95.4%, and 95.7%, respectively. The fusion of the textual features with the proposed structural features is a comprehensive approach, and the accuracy is higher than that when using only textual features. At the same time, the accuracy of the web page classification is improved by combining multiple classifiers, and is higher than those of the related web page classification algorithms.展开更多
Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary ...Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.展开更多
In order to solve the problems of shallow features loss and high computation cost of U-Net,we propose a lightweight with shallow features combination(IU-Net).IU-Net adds several convolution layers and short links to t...In order to solve the problems of shallow features loss and high computation cost of U-Net,we propose a lightweight with shallow features combination(IU-Net).IU-Net adds several convolution layers and short links to the skip path to extract more shallow features.At the same time,the original convolution is replaced by the depth-wise separable convolution to reduce the calculation cost and the number of parameters.IU-Net is applied to detecting small metal industrial products defects.It is evaluated on our own SUES-Washer dataset to verify the effectiveness.Experimental results demonstrate that our proposed method outperforms the original U-Net,and it has 1.73%,2.08%and 11.2%improvement in the intersection over union,accuracy,and detection time,respectively,which satisfies the requirements of industrial detection.展开更多
特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无...特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无法有效确定出分类顺序,提出了一种改进的SEaTH算法(optimized SEaTH,OPSEaTH)。OPSEaTH算法首先在J-M距离基础上构建了一类特征评价指标(E值),有效解决了特征值的离散度问题;然后,基于E值构建出特征组合评价指标(C_(e)值),可有效评估得到每种地物的最佳特征组合并自动确定出地物的分类顺序;最后基于eCognition等分类器可完成对地物对象的最终有效分类。利用高分二号遥感影像数据对本文方法进行了测试,并将结果分别与SEaTH算法、DPC、OIF和最近邻分类器的分类结果进行了对比,结果表明:OPSEaTH算法不仅能有效降低特征维数、优化特征空间,还能够对分类顺序进行自动化合理确定,总体精度和Kappa系数及其他精度指标,均显著优于基于SEaTH算法的特征选择结果。本文方法无论从特征降维效果、分类结果精度还是计算效率方面均优于DPC、OIF和最近邻分类器结果。OPSEaTH是一种更优的特征选择方法。展开更多
随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先...随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先,采用FM进行特征组合,产生两类组合特征;其次,将一类特征组合作为聚类算法的输入进行聚类;最后,将另一类特征组合输入由聚类产生的分段GBDT+逻辑回归组合的模型中进行预测。在两个公开数据集中进行了多角度验证,结果表明与其他几类常用的点击预测算法相比,LRCS在点击预测上有一定的性能提升。展开更多
基金The National Natural Science Foundation of China(No.61003112,61170181)the Open Research Fund of State Key Laboratory for Novel Softw are Technology of China(No.KFKT2010B02)the Key Project of Natural Science Research for Anhui Colleges of China(No.KJ2011A048)
文摘A new method for combining features via importance-inhibition analysis (IIA) is described to obtain more effective feature combination in learning question classification. Features are combined based on the inhibition among features as well as the importance of individual features. Experimental results on the Chinese questions set show that, the IIA method shows a gradual increase in average and maximum accuracies at all feature combinations, and achieves great improvement over the importance analysis(IA) method on the whole. Moreover, the IIA method achieves the same highest accuracy as the one by the exhaustive method, and further improves the performance of question classification.
基金supported by the Fundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (No.kfjj20191506)
文摘The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements.
基金This project is supported by Key Laboratory Program of National Defense-Science Foundation of China (No.51458030103BQ0205)Prorincial Natural Science Foundation of Jiangsu, China (No.BK2003094).
文摘The method of extracting the basic features of part from the file of STEPAP214 of 3-D model is proposed. All faces in the file are the minimal elements. The combination isdone for the faces with geometry restrictions and some attributes by the theory of the bestalphabetic tree which is constructed by HU--TUCKER algorithm in combination principle. So the basicfeatures could be attained. This provides the research basis to the more share and integration ofCAD information in the virtual enterprises. Finally, a case is used to illustrate the validity ofthe approach.
基金This paper is supported by National Natural Science Foundation of China (No. 61074078) and Fundamental Research Funds for the Central Universities (No. 12MS121).
基金supported by the National Natural Science Foundations of China(Nos.51205193,51475221)
文摘Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes.
文摘Objective To analyze the clinical features of the multiple trauma patients combined with spine and spinal cord injuries.Methods A retrospective study was performed in143multiple trauma patients combined with spine and spinal
文摘New value systems and new aesthetic experience have been formed in the new era,triggered by reform of technical means and transformation of social economy. New multimedia technologies will produce new feelings,new experience and new ways of thinking,which correspondingly result in changes of landscape designs. Virtual reality technology is used to build autokinetic effect and mobility of feature wall,complex structures and forms,vivid and creative landscape elements,so that the landscapes will interact with users intimately,and humanized landscape spaces will be created.
文摘Although evidence theory has been widely used in information fusion due to its effectiveness of uncertainty reasoning, the classical DS evidence theory involves counter-intuitive behaviors when high conflict information exists. Many modification methods have been developed which can be classified into the following two kinds of ideas, either modifying the combination rules or modifying the evidence sources. In order to make the modification more reasonable and more effective, this paper gives a thorough analysis of some typical existing modification methods firstly, and then extracts the intrinsic feature of the evidence sources by using evidence distance theory. Based on the extracted features, two modified plans of evidence theory according to the corresponding modification ideas have been proposed. The results of numerical examples prove the good performance of the plans when combining evidence sources with high conflict information.
基金supported by the National Natural Science Foundation of China(No.82204937).
文摘China is gradually establishing a multidisciplinary diagnosis and treatment system of traditional Chinese medicine(TCM)and western medicine.TCM-drug combination is prone to adverse reactions.Clinical feature is the appearance of adverse reactions,and target is the internal mechanism.The establishment of feature and target correlation model will contribute to the development of this field.This paper introduces the four steps of feature-target correlation method that risk identification,feature extraction,sign target correlation and experimental research.Xiyanping-Ribavirin combination is as an example to illustrate this method.It is expected that the method will be popularized and applied to protect clinical safety.
文摘In order to improve the accuracy and stability of fruit and vegetable image recognition by single feature,this project proposed multi-feature fusion algorithms and SVM classification algorithms.This project not only introduces the Reproducing Kernel Hilbert space to improve the multi-feature compatibility and improve multi-feature fusion algorithm,but also introduces TPS transformation model in SVM classifier to improve the classification accuracy,real-time and robustness of integration feature.By using multi-feature fusion algorithms and SVM classification algorithms,experimental results show that we can recognize the common fruit and vegetable images efficiently and accurately.
基金Project supported by the National Natural Science Foundation of China(No.61471314)the Welfare Technology Research Project of Zhejiang Province,China(No.LGG18F010003)。
文摘Precise web page classification can be achieved by evaluating features of web pages, and the structural features of web pages are effective complements to their textual features. Various classifiers have different characteristics, and multiple classifiers can be combined to allow classifiers to complement one another. In this study, a web page classification method based on heterogeneous features and a combination of multiple classifiers is proposed. Different from computing the frequency of HTML tags, we exploit the tree-like structure of HTML tags to characterize the structural features of a web page. Heterogeneous textual features and the proposed tree-like structural features are converted into vectors and fused. Confidence is proposed here as a criterion to compare the classification results of different classifiers by calculating the classification accuracy of a set of samples. Multiple classifiers are combined based on confidence with different decision strategies, such as voting, confidence comparison, and direct output, to give the final classification results. Experimental results demonstrate that on the Amazon dataset, 7-web-genres dataset, and DMOZ dataset, the accuracies are increased to 94.2%, 95.4%, and 95.7%, respectively. The fusion of the textual features with the proposed structural features is a comprehensive approach, and the accuracy is higher than that when using only textual features. At the same time, the accuracy of the web page classification is improved by combining multiple classifiers, and is higher than those of the related web page classification algorithms.
基金Project supported by the Fundamental Research Foundations for the Central Universities (Grant No.2009B30514)
文摘Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.
基金the Youth Fund of National Natural Science Foundation of China(61801286,62006150)Shanghai Young Science and Technology Talents Sailing Program(19YF1418400)Fund Project of Shanghai Science and Technology Commission(16dz1206002)。
文摘In order to solve the problems of shallow features loss and high computation cost of U-Net,we propose a lightweight with shallow features combination(IU-Net).IU-Net adds several convolution layers and short links to the skip path to extract more shallow features.At the same time,the original convolution is replaced by the depth-wise separable convolution to reduce the calculation cost and the number of parameters.IU-Net is applied to detecting small metal industrial products defects.It is evaluated on our own SUES-Washer dataset to verify the effectiveness.Experimental results demonstrate that our proposed method outperforms the original U-Net,and it has 1.73%,2.08%and 11.2%improvement in the intersection over union,accuracy,and detection time,respectively,which satisfies the requirements of industrial detection.
文摘特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无法有效确定出分类顺序,提出了一种改进的SEaTH算法(optimized SEaTH,OPSEaTH)。OPSEaTH算法首先在J-M距离基础上构建了一类特征评价指标(E值),有效解决了特征值的离散度问题;然后,基于E值构建出特征组合评价指标(C_(e)值),可有效评估得到每种地物的最佳特征组合并自动确定出地物的分类顺序;最后基于eCognition等分类器可完成对地物对象的最终有效分类。利用高分二号遥感影像数据对本文方法进行了测试,并将结果分别与SEaTH算法、DPC、OIF和最近邻分类器的分类结果进行了对比,结果表明:OPSEaTH算法不仅能有效降低特征维数、优化特征空间,还能够对分类顺序进行自动化合理确定,总体精度和Kappa系数及其他精度指标,均显著优于基于SEaTH算法的特征选择结果。本文方法无论从特征降维效果、分类结果精度还是计算效率方面均优于DPC、OIF和最近邻分类器结果。OPSEaTH是一种更优的特征选择方法。
文摘随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先,采用FM进行特征组合,产生两类组合特征;其次,将一类特征组合作为聚类算法的输入进行聚类;最后,将另一类特征组合输入由聚类产生的分段GBDT+逻辑回归组合的模型中进行预测。在两个公开数据集中进行了多角度验证,结果表明与其他几类常用的点击预测算法相比,LRCS在点击预测上有一定的性能提升。
文摘土壤重金属污染高光谱反演的特征波段提取方法和反演模型的选择是影响反演精度的关键;二者如何优化组合,提高反演精度是目前亟需解决的难题。在华南典型铬(Cr)污染区,采集了92组土壤样品,使用电感耦合等离子体质谱(inductively coupled plasma mass spectrometry,ICP-MS)检测Cr含量,并使用ASD Field Spec4地物光谱仪在实验室收集其高光谱信息。光谱信息预处理采用平滑滤波(SG)+标准正态化(SNV)+二阶微分(SD)变换组合,减弱土壤散射和噪声的影响。选择竞争性自适应重加权采样(CARS)、逐步投影算法(SPA)、无信息变量消除(UVE)、遗传算法(GA)四种算法提取特征波段。选择多元线性回归(MLR)、偏最小二乘法(PLSR)、支持向量回归(SVR)和人工神经网络(ANN)四种反演模型建立特征波段与Cr含量之间的关系。通过对比不同特征波段提取方法和反演模型组合对土壤Cr含量反演的结果发现:采用CARS和UVE特征波段提取方法可以显著提高PLSR、MLR和SVR模型的预测效果;SPA方法能够提高ANN模型的预测效果;通过SG+SNV+SD+CARS+PLSR组合方式,提取位于800~1000、1400~1700以及2100~2450 nm之间的98个特征波段,建模后模型验证,决定系数R2为0.97,均方根误差RMSE为5.25 mg·kg^(-1),平均绝对误差MAE为4.35 mg·kg^(-1),相对分析误差RPD为3.94,表明该模型在预测土壤Cr含量具有优异的性能。以土壤Cr污染高光谱反演为例,通过比较不同特征波段提取方法与反演模型组合的反演精度,确定最优模型,为小样本土壤重金属污染反演的建模提供了思路。